

DIPLOMA THESIS

INTEGRATION OF COMPUTER VISION

IN SCENARIO RECOGNITION

BY MEANS OF SYMBOLIC PROCESSING

Submitted at the Institute of Computer Technology,
 Vienna University of Technology

in partial fulfilment of the requirements for the degree of
Master Science

under supervision of

O. UNIV.PROF. DR. DIETMAR DIETRICH

and
 DIPL.-ING. WOLFGANG BURGSTALLER

Institute of Computer Technology
Vienna University of Technology

by

MANUEL PASCUAL GARCÍA-TUBÍO

Student ID 0627351

Vienna, November 2007

Abstract

 This thesis represents a proposal for scenario recognition enhancement by means of a
system that integrates computer vision. The work is based on the ARS-PC (Artificial
Recognition System Perception) concept, which tries to build a representation of the real
world with support of several sensors of different nature. This concept is brought into praxis
in a real prototype that achieves thereby the recognition of predefined situation and scenarios.
This thesis intended of providing the ARS-PC prototype with a computer vision system as an
additional information source – among the other sensors previously installed – in order to
enhance the mentioned recognition of scenarios.

Through this work the ARS-PC model is studied as a whole with the current configuration of
the respective prototype. The design of the system is carried out considering on the one hand
the necessary computer vision tools – in sense of image processing, objects recognizing, etc.
– and on the other hand the different mechanisms needed to integrate this system in that one
running at the ARS-PC prototype. From the implementation of this work results a system that
takes advantage of the sensors installed in the prototype by combining them with the
computer vision system. Furthermore, the installation described in this thesis provides
practical insights about possibilities and limits of the resulting integrated system.

Abstracto

En esta tesis representa una propuesta para la mejora de reconocimiento de escenarios
mediante mediante la integración de un sistema de visión artificial. El trabajo está basado en
el concepto ARS-PC (Artificial Recognition System Perception), que intenta crear una
representación del mundo real con el soporte de multitud de sensores de diferente naturaleza.
Este concepto ha sido llevado a la práctica en un prototipo real que consigue de este modo el
reconocimiento de situaciones y escenarios previamente definidos. Esta tesis representa la
propuesta de proveer el prototipo ARS-PC con un sistema de visión artificial como fuente de
información adicional – entre los otros sensores previamente instalados – para mejorar dicho
reconocimiento de escenarios.

A lo largo de este trabajo el modelo ARS-PC es estudiado en conjunto con la actual
configuración del prototipo correspondiente. El diseño del sistema está llevado acabo
considerando, por un lado las herramientas necesarias para la visión artificial – en el sentido
de procesamiento de imagen, reconocimiento de objetos, etc. – y por otro lado los
mecanismos necesarios para integrar este sistema en el que está funcionando en el prototipo
ARS-PC. De la implementación de este trabajo resulta un sistema que saca beneficio de los
sensores previamente instalados combinándolos con el sistema de visión artificial. Además,
la instalación descrita en esta tesis proporciona enfoques prácticos sobre las posibilidades y
los límites del sistema integrado resultante.

Acknowledgments

I am indebted to professor Dietmar Dietrich, head of the Institute of Computer of
Technology, who gave me the opportunity to contribute to the ARS project and motivated me
to start my diploma thesis. I express special thanks to my supervisor Wolfgang Burgstaller
who supported me especially in the last, most important phase of this work. In addition I want
to extend my gratitude to the ARS project team, especially to Edgar Holleis and Andreas
Richtsfeld for the pleasant teamwork and his patience during the whole thesis.

Thanks to my family, for giving me unconditional support and motivation since ever.

Index

Chapter 1 1 Introduction
1.1 2 A new Approach
1.2 3 Purpose and Problem Statement

Chapter 2 5 Framework
2.1 5 Artificial Recognition System

2.1.1 6 The ARS Model
2.1.2 6 Symbol Understanding
2.1.3 7 Symbol Level
2.1.4 9 Scenarios
2.1.5 11 Representation Symbols
2.1.6 12 Snapshot Symbols
2.1.7 14 Microsymbols

2.2 16 Applications Environment – Smart Kitchen.
2.2.1 16 Layout
2.2.2 18 Sensory Equipment
2.2.3 20 Octobus and database
2.2.4 21 SymbolNet

2.3 23 Computer Vision
2.3.1 23 Definition
2.3.2 24 Software
2.3.3 25 Hardware

Chapter 3 27 System Design
3.1 27 Applications

3.1.1 27 Person Tracking
3.1.2 28 Scenario Recognition
3.1.3 29 Child safety

3.2 29 Running Modes
3.3 30 Image Processing

3.3.1 31 Person Detection

I

3.3.2 32 Shape Distinction
3.3.3 33 Background Subtraction
3.3.4 34 Camera Calibration and SPD formula
3.3.5 35 Image Aberrations
3.3.6 36 Image Treating

3.4 39 Interconnectors
3.4.1 39 Two-way connection
3.4.2 40 Symbolic Processing

Chapter 4 41 System Integration
4.1 42 Interconnectors (iCon)

4.1.1 43 Sender
4.1.2 43 Receiver
4.1.3 46 NewSymbolMessage modules
4.1.4 48 Module: Proof Symbols
4.1.5 49 Module: Proof Person
4.1.6 50 Module: List
4.1.7 50 Module: Get Values

4.2 52 Image Processing (imgPro)
4.2.1 53 Door Finder
4.2.2 55 Face Detect
4.2.3 57 Size Estimator
4.2.4 62 Camera Calibration
4.2.5 65 Magazine Controller
4.2.6 68 Cup Detection

4.3 70 Interface
4.3.1 70 Camera Loop
4.3.2 71 Function Management
4.3.3 72 Live Mode
4.3.4 73 Database Mode
4.3.5 75 Recording Mode

4.4 77 Applications
4.4.1 77 Adult/Child Distinction
4.4.2 79 Scenario: Adult/Child makes coffee
4.4.3 80 Scenario: Person takes magazine
4.4.4 82 Scenario: Child near hot stove

4.5 82 Integration in ARS-PC system
4.5.1 83 ARS-PC structure
4.5.2 85 Integration procedure

Chapter 5 86 Results and Further Work
5.1 86 Results
5.2 91 Further Work

II

Chapter 1 Introduction

Video surveillance – surveillance from French “watching over” – has advanced further and
faster in the period from 2001 to 2005 than in any prior comparable time period [Kru06].
Long ago, around the sixties, video surveillance began with simple closed circuit television
monitoring, intended in the most of the cases for law enforcement, but rather used in
exceptional situations, commonly by the police. Years later video cassette recorders hit the
market, what meant surveillance could be preserved on tape as evidence. Slowly was video
surveillance being integrated in different fields like traffic control or security systems in
banks or public areas. However video surveillance made complete sense with the
technologies advance during the computer revolution. The digital migration, the emergence
of Internet and the prices dropping of the electronic devices derived in the integration of
video surveillance in many other disciplines. IP cameras, servers, LANs, WANs, algorithms,
etc. are all converging along technologies such as access control, life safety, intrusion alarms,
etc., with the intent of configure fully integrated systems [Kru06].

On the other hand, and in a parallel way to the video surveillance, another discipline called
building automation has been undergoing deep changes in the last decades. The term
“automatic” derives from Greek automatos which is composed of the roots words autos-
“self” and matos- “thinking, animated” [OED01]. This term is rather understood in sense of
mechanization, or providing humans with machinery in order to replace human power by
mechanical power [Goe06]. Thus building automation is a discipline that is intended to
provide buildings with a certain grade of autonomy. Modern automated buildings combines
the security system with the fire, heating, ventilation, air-conditioning (HVAC), lighting, and
overall personal communication functions. Combining fire system with access control has the
advantage of being able to automatically deactivate the alarm on doors when fire alarms
sounds. The integration of the fire detection with HVAC can help control smoke by using
advanced systems to contain it to a particular floor.

Video surveillance and building automation have one factor in common. They tend to be
human-centered; the nature of these two disciplines has derived in an inevitable tendency of
fusion between them. The integration of video surveillance in building automation provides
the autonomous system with a grater support and vice versa – e.g. integrating a video
surveillance system with the fire systems allows end users to view footage and discover the

 1

Chapter 1 Introduction

cause of a blaze as well as monitoring and view the fire as it occurring [Kru06]. Building
automation should achieve an efficient management of the resources and a support in the use
of the technical systems. It should help in the energy saving as well in extending the lifetime
of technical installations and at the same time provide comfort and safety for the people
living in there.

1.1 A new Approach

Long gone are the days when video surveillance meant low-resolution, black-and-white or
analog closed-circuit television. In recent years has increased the performance at the system
level, faster microprocessors, larger memories and even wider buses. Due to these
technological advances, the arising of the computer vision was achieved. Computer vision is
a discipline that focuses on providing computers with the functions typical of human vision.
By means of this technique a system can automatically detect scenes with people and vehicles
or other targets of interest, classify them in categories such as people, cars, bicycles, or buses,
extract their trajectories, recognize faces and arm positions, and provide some form of
behaviour analysis. Such an analysis relies on a list of previously specified behaviours or on
statistical observations such as frequent-versus-infrequent behaviours. The basic goal is not to
completely replace security personnel but to assist them in supervising wider areas and
focusing their attention on events of interest. Although the critical issue of privacy must be
addressed before society widely adopts these video surveillance systems, the recent need for
increased security has made them more likely to win general acceptance [AIP07]. Computer
vision results in this sense another proposal of mechanisation, it provides great support in
fields like industrial automation, robotics and biomedicine among others and of course it
provides great support in the video surveillance. Once again the convergence of the
technologies arises.

Building automation is a discipline that needs from many others to be affordable, including
the concept of video surveillance and the implementation of computer vision. However it is
not doubt that an enhancement of these systems is achieved by means of a greater knowledge
of the surrounding world, not only in sense of designing those systems, but also in providing
them with a greater perception of the environment. Derived from this last premise, results the
question about how to provide those systems with a greater perception. Cheap sensors do not
often accomplish the necessary tolerances or the respective accuracy. However, by means of
the combination of several simple sensors – based on different technologies and physical
effects – is possible to extract high-quality data. With the combination of the different
sensors, the information provided does not involve dependence on the accuracy and neither
on the function of these sensors anymore. Moreover although sensors breakdown, is possible
to obtain useful data through the redundancy of the information obtained as well as improve
the failure-tolerance [Ric07, Pra06]. Considering the use of several different and/or redundant
sensors, is important to take into account that the always more increasing number of data-

2

Chapter 1 Introduction

points derives in a greater endeavour in order to obtain and process the information
generated. Actually the challenge that faces building automation in the current days is the
way to process the large amount of data, resulting from the always more used sensors. It is in
this question where the ARS arises with a new proposal in order to enhance building
automation systems. As conclusion of several researches, the ARS found an existing system
which is capable to process large amounts of information and manage it by extracting
important facts from those which are irrelevant; the system found is the human brain. Thus
the ARS extrapolates models of perception from neuroscience, psychology and
psychoanalysis into building automation in order to provide building automation systems
with human perception capabilities.

1.2 Purpose and Problem Statement

Nowadays at the ICT (Institute of Computer Technology) stands a real prototype called the
“Smart Kitchen” (SmaKi) which represents the projection of the ARS model in the real
world, an experimental model of building automation or concretely in this case, domotics –
home automation. This prototype is currently equipped with different sensors, which are
managed in order to recognize situations and scenarios by means of a system which
composes this ARS model. The system which manages the SmaKi achieves with accuracy the
detection of some predefined scenarios. However this prototype is currently equipped with
less than 100 sensors, which most of them are used for the only application of detecting the
position of persons in the room. This situation already shows some benefits of using the ARS
model in building automation, nevertheless this model is intended for much more; in fact it
considers the further installation of a wider variety of sensors that would provide the system
which a greater perception capability. This consideration represents the starting point for this
thesis; the currently system lacks of a vision system. Taking this fact into account and
considering the great support the video surveillance provides to the building automation, the
purpose of this work derives into providing the SmaKi with a computer vision system. This
system should be properly integrated in order to enhance the recognition of situations and
scenarios and consequently demonstrate the profits of using the ARS concept in building
automation.

Chapter 2 describes the “state of the art” or framework in which this work is placed. This
chapter answers to the questions “how”, where” and “with what” this system is developed. In
the first part of Chapter 2 is introduced the Artificial Recognition System concept, which
represents the basis of this work. It describes a new proposal for the processing of sensor-data
and the recognition of situations and scenarios. The ARS model gives specific guidelines in
how to develop the different functions, not only the way to process the sensory information,
but also the mechanism to recognize the scenarios. The second part of Chapter 2 treats the
applications environment, the Smart Kitchen, environment in which this work is focused,
where the integration of this system will be carried out. The last part of this chapter

3

Chapter 1 Introduction

introduces the computer vision as a new data source in the SmaKi and describes the software
and the hardware used to fulfil this task.

In Chapter 3 is made a study about in which applications the integration of the computer
vision can contribute to the ARS. Due to the raising of the system the main application is the
scenario recognition, in addition the system is focused in “person tracking”, and in “child
safety”. Subsequently are described the different tools or procedures needed to provide the
system with basic capabilities of artificial vision in order to accomplish the applications. The
Chapter 3 concludes with the necessary components that have to compose the system in order
to achieve a proper integration of the system at hand in the already – at the SmaKi – running
system. The system design derives in the consequently system integration, which is the
content of Chapter 4 . This chapter represents the proposal of a possible system development
which achieves the purposes for which this work is conceived. The results of this system, the
advantages and the barriers found through its development are finally shown in Chapter 5 .

4

Chapter 2 Framework

The next section 2.1 gives a superficial idea about the ARS model; concrete guidelines
specify the right procedure to follow in system design. Although the idea is to build a
modular and portable system, the environment (section 2.2) in which this work is focused,
establishes a specific starting point which makes conditional the development of the work.
Section 2.3 gives a brief introduction about Computer Vision and describes the different
software and hardware used for carrying out this task.

2.1 Artificial Recognition System

In order to adapt building automation to the new and always more challenging society
demands, and taking into account the vertiginous development of the technologies, in year
2003 a new research group was founded at the ICT by Prof. Dietrich, called ARS the
“Artificial Recognition System” [ICT07, ARS07, Rös06]. In the endeavour to enhance
building automation the ARS applies the newest theories of neuroscience, psychology and
psychoanalysis described in [Die04] and [Bra04], which are intended to extrapolate methods
of human perception and situation recognition into automation control. Taking this situation
as basis, the first step given by the ARS was by means of the work carried out in [Pra06],
which creates an abstract representation of the world in order to improve the perceptive
capabilities of automation systems [Rös06].

The next section 2.1.1 introduces the two groups of research in which the ARS was split,
ARS-PsychoAnalysis (ARS-PA) and ARS-PerCeption (ARS-PC) and gives a bit deeper
description about the system described in [Pra06]. In section 2.1.2 is described the symbol
concept, since is an important component involved in [Pra06] often used throughout that
work and consequently throughout this thesis. From this symbol concept results the necessity
of creating a hierarchical structure in which different kind symbols are placed according to
specific criteria, which is mainly the content of section 2.1.3. Finally in conclude this chapter
is given a description about some of the already defined symbols and the existing connection
among them.

 5

Chapter 2 Framework

2.1.1 The ARS Model

Consequence of the “Smart Kitchen” project explained in section 2.2 was the branch of the
ARS in two different – however closely linked – research groups, the ARS-PA and the ARS-
PC. The ARS-PA proposes different control architectures based on concepts of
psychoanalysis and other areas of cognitive science, in order to give greater autonomy to
control systems in sense of decision making [Rös06]. Nevertheless to build a consistent
system, the ARS needs from another discipline to extract the necessary information of the
real world for the further decision making. The ARS-PC, based in neuropsychology, faces
this necessity by designing a system based in human like perception, which by means of the
implementation of several sensors, extracts the essential characteristics of a situation [Pra06].

Nowadays building automation is supported by the great advance of the technologies, current
systems are composed by thousands of different sensors and actuators to interface with the
real world, the possibilities of designing multiple data source sensor networks are manifold.
Using more sensors the capability of perception of the environment increases. Nevertheless,
the more information available, the greater necessity to distinguish between important and
unimportant information [Pra06]. Pratl, after several studies, concludes that the most suitable
system to carry out such a task is the human brain, since it is a “system” that process
constantly incoming data and analyzes the important information in order to build a
representation of the world [Pra06]. Applying this idea, the work developed by [Pra06]
represents the starting point for the design and the implementation of the system.

The ARS-PC group, impelled by the researches in [Pra06], has given rise to the
implementation of a real prototype at the ICT, the assembly of the Smart Kitchen, in which
the ideas of Pratl are brought to the praxis [Goe06]. Thus [Ric07] continued this project in his
diploma thesis, resulting in the current ARS-PC system which manages the operation of the
SmaKi and represents the real basis for the integration of the system developed through this
work, the ARS-PC Vision. Throughout this thesis, these two systems, the ARS-PC system
and the ARS-PC Vision, will be clearly differentiated. Although the purpose of this work is
to assemble only one system that controls the SmaKi, is important to differentiate them in
order to explain the proper integration of the system developed in here.

2.1.2 Symbol Understanding

Before going deeper in matter is important to describe what the term “symbol” means, since
it represent in the context of this thesis much more than the common meaning of the word.
Etymologically the term symbol (symbolon) stems from the late Greek, which leads to the
word symballain what literally means “to throw together”. As the Encyclopaedia Britannica
says, a symbol is “an arbitrary or conventional sign used in writing or printing relating to
particular field to represent operations, quantities, elements, or qualities” [BOE07]. This last

6

Chapter 2 Framework

definition could approach to the meaning of the term symbol used in this work, however the
real concept of this word is given with the raising of the ARS model given in [Pra06].

Pratl introduces the term symbol after considering de necessity of resorting to the sensor
fusion, in order to distinguish the sensor layer from the applications. Sensor fusion is defined
in [Elm02] as:

[…] the combination of sensory data or data derived from sensory data
in order to produce enhanced data in form of an internal representation
of the process environment.

That means that, for a greater perception of the environment – i.e. an accurately system’s
representation of the real world – applications should use more than one sensor to gain
redundant information from the physical world. Each piece of information originated from
the sensors is what in [Pra06] is defined as symbol. The symbolic representation of events,
objects and information in general, is what in the ARS systems is called as symbolization
[Goe06].

2.1.3 Symbol Level

Due to reasons described in [Pra06], the defined symbols are arranged following a
hierarchical architecture, different levels that represent not only more grade of complexity,
but also different states of perception. In Figure 1 are depicted the symbols (represented as
cuboids) and their relation among the levels, the higher the level, the greater the volume and
sophistication. The system comprises three1 different levels, the microsymbol level, the
snapshot symbol level and the representation symbol level.

Figure 1: Symbol levels and correspondences in the ARS model [Pra06].

1. Actually the system described in [Pra06] is composed by more layers than those explained in this
work, but these are those necessary and enough for the design and development of this system.

7

Chapter 2 Framework

This distribution makes analogy to the human process of cognition, in order to apply it to
building automation (see [Die04, Bra04]). The first layer is the one directly connected with
the sensors, therefore the large number of cuboids and the less complexity of these symbols.
On the other hand is the top level, which represents the output of the system, how the system
interprets the surrounding world, the world representation.

Microsymbol Level – The symbols in this level are directly generated through sensor values,
it is in this level where the symbol data-flow starts. Due to the little information
processed in these symbols, normally binary, they are designated as microsymbols.
When the environment changes and with it a sensor value, microsymbols are
generated, deleted or modified. For example if a person goes through the room, several
sensors are driven and thereby several microsymbols are fast generated and deleted.
Since this level is directly connected with the sensors, if the number of sensors rises,
the number of microsymbols available rises too (sample of this connection is shown
further in Figure 20 in section 2.1.7). Thereby is possible to generate redundant
information, since different sensors can provide same information. The movement of a
person is detectable with cameras, tactile floor sensors and/or movement detectors and
each of them would provide support in the generation of the corresponding
microsymbol.

Snapshot Symbol Level – Symbols in this level are based on one or more microsymbols and
compose the previous layer for the Representation Level. The symbols in this level are
designated snapshot since they represent a part of the environment in a specific
moment. All the snapshot-symbols together represent the real world understood in a
concrete moment.

Representation Symbol Level – This level stands between the Snapshot Level and the
Scenario Level. These symbols represent the surrounding world with the information
provided in the layer underneath. Unlike the previous two layers, the representation
symbols have a long lifetime and are rarely generated or eliminated. Representation-
symbols contain all the information about the state of the real world and build this way
a consistent and continuous representation of the environment. While the
representation symbol exists its properties are regularly updated, they represent the
environment in a concrete moment but they also contain information of the past.

Scenario Symbol Level – This level is placed at the top of the pyramid, where scenario –
symbols are generated. They describe a concrete situation or a series of situations in the
real world. These symbols represent the real aim of the whole system, since they
compose the different purpose applications.

The current system is composed by a 30-symbols alphabet [Ric07]. In the next sections are
explained only the symbols that are necessary to the realization of this work. Starting from

8

Chapter 2 Framework

those which contain more information, the scenario – symbols, until reaching up to those
which are the base of the system, the microsymbols.

Figure 2 describes de diagram used to explain the different symbols in the next sections; it
indicates the name of the symbol and the properties that characterize it, as well as the level
(“lvl”) in which the symbol is produced – “sc” stands for scenario-symbol level, “rp” for
representation-symbol level, “ss” for snaphot-symbol level and “ms” represents the
microsymbol-level.

Figure 2: Level – symbol – properties diagram.

The symbols described next attempt to build the representation of the environment. These
symbols and also their properties are fix defined for this system, but are able to be modified
in further works. They are defined taking into account the sensors available, if new sensors
are installed in the system, the number of symbols can increase and their properties modified
or expanded.

2.1.4 Scenarios

Meeting – The scenario meeting describes one get-together of persons at one table. That
means that at least two persons must take part in this scenario. The scenario does not consider
what the persons are doing during the meeting. If these persons meet near a coffee machine or
bookshelf, the scenario will be generated too. As explained in Figure 3 this is a scenario –
symbol and contains, as only property, the place where the meeting occurs.

Figure 3: Scenario – symbol "Meeting".

Person and object – The scenario “Person and object” describes the manipulation of one
object by one person. The object represents any item detected by the system. The scenario
should be generated when a person brings an object into the room, as well as when the person
takes it from the room away. Represented in Figure 4 is the only property that belongs to this
symbol, which is the position where the object was left.

9

Chapter 2 Framework

Figure 4: Scenario – symbol “Person and object”.

Person makes coffee – This scenario will be generated when one person makes coffee. As
represented in Figure 5, the name of the person, where and when the coffee was made, are
properties identified as part of the scenario. The scenario will exist for that person until
he/she leaves the room.

Figure 5: Scenario – symbol “Person makes coffee”.

Child near hot stove – When a child is near a hot stove, it can represent a dangerous
situation for the child. This is the case when no adult is in the room. This scenario should
describe a situation of danger. Figure 6 describes the property that characterizes this symbol;
the position where the event occurs.

Figure 6: Scenario – symbol “Child near hot stove”.

Child makes coffee – As considered in the previous situation, permitting a child to
manipulate the coffee machine represents a dangerous situation for him. The scenario “Child
makes coffee” represents an unwanted situation for the child. The property contained in this
symbol is the position; represented in Figure 7.

Figure 7: Scenario – symbol “Child makes coffee”.

10

Chapter 2 Framework

Person takes magazine – The scenario “Person takes magazine” describes the situation in
which a detected person modifies the “state” of the bookshelf. This scenario should be
generated when a person takes a magazine away from the bookshelf, as well as when the
person puts it back in the bookshelf. Represented in Figure 8 is the only property that belongs
to this symbol, which is the position where the magazine was taken, actually the position of
the bookshelf.

Figure 8: Scenario – symbol “Person takes magazine”

All the scenarios mentioned above are part of the already defined symbols in the ARS-PC; as
exception of this last one scenario-symbol “Person takes magazine”. This last symbol
represents a new adding to the actual system thanks to the integration of the computer vision
system developed in the work at hand.

2.1.5 Representation Symbols

Person – Since persons are the main target of the system, the one which takes part in all
applications, all the symbols in the adjacent levels are linked with the symbol Person. As
described in Figure 9, this symbol is placed in the representation layer and their properties are
the called, position, usage, near and name. The three last properties are optional. The position
describes the actual location of the person in the room, the usage property is generated if the
system detects subject manipulating some object, and the property near appears when the
person is close to a specific piece of furniture or object from the room. And finally,
considering that the person can be detected and recognized there is a possible property name.
Until this symbol exists, those properties can be updated considering what the person does in
the room.

Figure 9: Representation – symbol Person.

11

Chapter 2 Framework

Child – The symbol Child as the symbol Person, is the basis for one of the main applications
of the system; in this case, “child safety”. This symbol is used to distinguish adults from
children and is the one needed to compose the subsequent scenario – symbols:
“ChildNearStove” and “ChildMakesCoffee”. The symbol Child belongs to the representation
level and contains the property near, what is represented in Figure 10.

Figure 10: Representation – symbol Child.

Hot stove – This symbol is generated when the stove becomes hot. This symbol, combined
with the previous one generates the “Child near stove” symbol. As described in Figure 11, it
is one of the representation – symbols and its property position determines where the stove is
situated in the room.

Figure 11: Representation – symbol “Hot stove”.

Make coffee – The symbol “Make coffee” represents the preparation of coffee. This symbol
contributes to the generation of the symbols “Person makes coffee” and “Child makes
coffee”. Represented in Figure 12 is the representation – symbol and its property position.

Figure 12: Representation – symbol “Make coffee”.

2.1.6 Snapshot Symbols

Gait – When a person walks through the SmaKi, activates a succession of sensors. The
snapshot – symbol Gait represents a succession of known sensor values, which allows to
follow the route of the person along the room. Figure 13 drafts the five properties that can
appear together with the symbol Gait. The property “start position” contains where the gait
starts and the property position is the actual location of the person. Velocity, direction and
acceleration can appear within the symbol in matter too.

12

Chapter 2 Framework

Figure 13: Snapshot – symbol Gait.

Footstep – This symbol represents a footstep from a person. When a person walks over the
floor sensors he or she leaves a specific pattern as he/she presses and leaves the sensor. This
pattern must be recognized and represented through this symbol. This symbol will help to
distinguish persons from other objects in the room. Located in the snapshot layer this symbol
has always the property position. The property velocity and direction can appear too, as
shown in Figure 14.

Figure 14: Snapshot – symbol Footstep.

Item – The symbol Item represents a concrete fixed object in the room that is considered as
potential cause of scenarios. This symbol is connected to the symbol person and provides it
with worthy information about its activities. Represented in Figure 15 is the symbol item,
which belongs to the scenario level and contains the property Position, which indicates the
coordinates of this object in the room. It also contains the property Item which provides the
type of item which is being treated.

Figure 15: Snapshot – symbol Item

All symbols of type Item have no functionality that can be detected by the system. This is
valid for example for the bookshelf, the copy machine and the table. Items which have

13

Chapter 2 Framework

functions that are considered by the system are represented with other symbols. A sample of
this fact are the symbol “Coffee machine”, Fridge or the symbol Door, represented in Figure
20 and detailed described in [Ric07].

2.1.7 Microsymbols

Object – Generated as microsymbol Object is the one produced by the system when it detects
anything in the room and cannot recognize what it is. The way the objects are detected is by
mean of the tactile floor sensors, hence the imprecision of this information; any object, as
well as a table leg or in a first moment a person, are detected this way as an object and the
microsymbol is consequently generated. As described in Figure 16, the property belonging to
this symbol is the position where the object is detected.

Figure 16: Microsymbol Object.

Movement – The symbol is generated when movement in room is detected. It is based in the
binary sensor values provided by the motion detectors that control concrete regions of the
room. The only property that is contained in this microsymbol is the property position; shown
in Figure 17.

Figure 17: Microsymbol Movement.

Door status – The symbol “Door status” represents the state of the door at all times, it is a
symbol which is always present. Since the door is a fixed element in the room its property
position, shown in Figure 18, is invariable too. At the moment the program starts, this symbol
is generated with all its properties.

Figure 18: Microsymbol “Door status".

14

Chapter 2 Framework

Identify – The symbol Identify should facilitate the recognition of predefined Persons
through concrete person features. This symbol is used for the generation of the symbol
“Known person”. This microsymbol has the properties Position and Name, what is depicted
in Figure 19.

Figure 19: Microsymbol Identify.

The complete symbol tree with the respective connections among the different levels is
shown in Figure 20 which represents the ARS-PC Graphical Representation for the SmaKi.
This is part of the graphical layer of the already implemented ARS-PC system developed in
[Ric07].

Figure 20: ARS-PC Graphical Representation. Symbol interconnections.

The graph depicted in Figure 20 makes analogy to the symbol level model described in section
2.1.3 (see Figure 1). The graph at hand is composed of five levels. The one at the bottom
represents the sensor layer, in there are represented all the available sensors at the SmaKi,

15

Chapter 2 Framework

tactile floor sensors, door contact switch, cameras, etc. The next level, the one connected with
the sensor layer is the microsymbol level. In this level are represented some of the mentioned
symbols, like the microsymbol Object or the “Door Status” symbol, as well as others like the
microsymbol Movement or the symbol “Coffee machine status”, each and everyone of them
defined directly by the respective sensors. The level above is the snapshot-symbol level, in
this level there are symbols like the explained snapshot-symbol Gait or others like the
snapshot-symbol Footstep – this represents the footstep from a person, recognized since the
person leaves a specific pattern as he walks over the floor sensors (the exact definition of
each and every symbol is described in [Ric07]). The next level depicted is the representation-
symbol level, here is possible to observe the mentioned relevance the symbol Person means
in the system, all the symbols from the snapshot-level are connected to the symbol in matter,
as well as this symbol is involved in the generation of all the symbols in the next level. The
next and highest represented level is the scenario-symbol level where are represented all the
mentioned symbol-scenarios in section 2.1.4 (as exception for the scenario “Person takes
magazine” that what was not implemented as [Ric07] developed this application).

2.2 Applications Environment – Smart Kitchen.

The Smart Kitchen started as project to prove the profits of using many small-inexpensive
devices integrated with a fieldbus network in domotics [SRT01] . With this idea, the project
was continued with the design and assembly of a prototype [Goe06], basing it on the
principles of the ARS system described in [Pra06]. Nowadays the SmaKi is a real prototype
which, equipped with several sensors, represents the test-environment for the ARS-PC.

In this section the SmaKi is described with its respective components, starting with the layout
of the room in section 2.2.1, then in section 2.2.2 the sensor equipment and distribution of the
SmaKi, and finally the different hardware installed (section 2.2.3) and software used (section
2.2.4) to make the system work.

2.2.1 Layout

After the assembly of the SmaKi, the result layout of the prototype ended as shown in Figure
21. Following this figure the corresponding elements of the room are described next
clockwise: On the left side of the room there is a door (A), the only one in the SmaKi. Next to
the door, on its left side, there is a sink (B) and a dishwasher (C) underneath. Beside the sink
there are a stove (D), a coffee machine (E), and a fridge (F). In the piece of furniture next to
the fridge (G) stands the hardware for the processing of the data coming from the different
sensors. Keeping the same direction, now in front of the door, there is table (H) and close to it
(I) the only window in the room. There are, against the right wall, a bookshelf (J) and a copier
(K). And finally, in the corner, there are some shelves.

16

Chapter 2 Framework

Figure 21: Graph in plan view of the SmaKi with sensors.

The different sensors shown in Figure 21 are specially placed to control specific elements or
regions in the room that are full of interest for the applications this environment is focused.
The ARS indicates the advantages of combining the information of the different sensors. In
order to assemble new sensors in the SmaKi is important to consider which regions are
already covered and which not. For sensors like the tactile sensors or cameras the
approximate metrics of the room are valuable too. Figure 22 shows some room dimensions of
interest in the SmaKi, necessary for the ARS-PC Vision design.

Figure 22: SmaKi plant view with metrics of interest

17

Chapter 2 Framework

2.2.2 Sensory Equipment

As mentioned above, the SmaKi must be assembled with some small sensors which provide
the information. These devices are the basis of the system, the transducer of the real-world
events into manageable information. The different sensors and their situation in the SmaKi
are represented in Figure 21.

Floor sensors – These sensors are placed almost all around the room, taking care in specific
areas which ones can be of special interest; a total number of 94 sensors each with
600x175 mm dimension. Actually the (approximate) distribution of the tactile floor
sensors is represented in Figure 21.
Floor sensors work when a pressure is exerted on them and provide a binary signal
when this occurs. Their position is given in three values: POS1, POS2 and POS3,
which is enough information to determine the coordinates of the sensor in the room;
since, as shown in Figure 23, a square is directly described with these three points.

Figure 23: Floor sensor with three point position.

Switch contacts – Switch contacts are used to detect the state of a device; for example “on –
off” or “open – closed”. As represented in Figure 21 there are two switch contacts in
the SmaKi, one in the main door and the second one in the fridge. Both of them to
determine if each door is open or closed.

Vibration sensor – Attached to the coffee machine there is a vibration sensor. When coffee
is prepared the coffee machine vibrates, and when it finishes serving it vibrates again.
With this information it is possible to determine, not only when the machine is
working, but also to estimate how much coffee is served. The sensor only detects
vibrations grater than 1 m/s2.

Motion detector – In the SmaKi there are three motion detectors from type PIR (Passive
InfraRed). They are specially placed to cover the whole room, as described in Figure
24, one on the right side of the room and the remaining two on at the opposite wall.
Since the detection region describes a pyramidal form, these three detectors are enough
for an optimal detection coverage.

18

Chapter 2 Framework

Figure 24: PIR coverage in SmaKi in plant view.

These PIR devices work with the infra-red spectrum and detect heat in movement
sources. This is the reason why they are called passive, since they do not emit any
radiation, only wait to detect for detecting some heat variation.
This kind of detectors is limited by its sensitivity, in two aspects chiefly. If a person
moves very slowly, it means that the heat variation is very small and the device will
not detect it. If the object to detect is very small, the amount of heat will be negligible
for the PIR and the device will not react.

Temperature sensor – To control the state of the stove, whether it is hot or not, a
temperature sensor must be installed there. Although at the moment there is no
temperature sensor assembled, the system in which this work is based [Ric07],
considers the future installation of this sensor in the SmaKi and was implemented
taking care of this fact.

Cameras – All the sensors mentioned above provide very useful information, but only binary
information. For more sophisticated detection, cameras are needed; for example,
human activities or object shapes are only detected this way. Cameras provide a great
amount of information and their application possibilities are incalculable. Thereby with
the combination with the rest of the sensors the resulting information is much more
robust than before.
Three USB WebCams are assembled in the SmaKi: CAM1, CAM2 and CAM3. They
are placed specifically to control different regions of the room. As represented in
Figure 25 pointed in blue, keeping the notation from Figure 21, CAM1 is placed
focusing on the door (A) right on the other side; centred a) and fixed to the ceiling b).
CAM2 is located on the top of the fridge (F) and is focusing to the bookshelf (J). The
last camera, CAM3, is focused downwards, situated over the coffee machine (E). The
specifications and a wider description of these cameras are given later in section 2.3.3.

19

Chapter 2 Framework

Figure 25: Views from cameras 1, 2 and 3. a) SmaKi plant view. b) SmaKi side view.

2.2.3 Octobus and database

Except for the cameras, all the sensors in the Smart Kitchen can be considered simple, in the
sense that they provide only binary information. Due to this fact a specific hardware was
necessary for the sensor data analysis. Hence, this hardware, called Octobus®, and its
corresponding software, was developed at the ICT in collaboration with “haag.cc embedded
systems & it consulting GMBH” as part of a previous diploma thesis [Goe06]. The Octobus
is composed by two main modules, the CPU module and the Octobus module. The CPU
module is an IBM processor equipped with an embedded Linux operative system. For the
communication with the ARS-PC system it is equipped with two net interfaces and a serial
port. The sensors are able to be connected through specific extension modules designed as
OctoIO. These modules have 12 digital inputs and outputs and are red and written through a
bus system. It is possible to connect up to 16 OctoIO modules, which provide the Octobus
with a total number of 192 digital inputs and 192 digital outputs.

As shown in Figure 26, the Octobus is the interface between the sensor network and the
ARS-PC System. If one sensor value changes, a message is sent from the Octobus to the
ARS-PC System and those changes are written in the Sensor-Database at the same time. The
Octobus needs 70 ms to check a sensor change and send the respective message. Although
the ARS model does not consider any data storage for long periods, two databases were
mounted in the SmaKi, one for the storage of sensor information and the other one for the
storage of the generated symbols.

20

Chapter 2 Framework

With the implementation of the Sensor-Database all the information coming from the sensors
produced in each scenario can be stored. Since the information is stored in the database, the
ARS-PC System can always reproduce those scenarios. This provides the possibility to test
the ARS-PC and check the effects of the changes when programming. Due to the great
amount of symbols the ARS-PC processes, an additional database is necessary in which all
the symbols can be stored, the Symbol-Database. All the symbols with their properties can be
stored there by the ARS-PC System. With this data the ARS-PC can generate, actualize and
delete the symbols.

Figure 26: SmaKi hardware connections.

2.2.4 SymbolNet

The ARS framework uses a software-package called SymbolNet to process and transmit data.
It was developed at the ICT for the ARS project in a work carried out by [Hol06]. This
package contains several functions to process symbolic information. In this section are
described the most important concepts and notations considering the development of this
work. Among the different components composing the SymbolNet there are Symbol-Beans,
with the possible fields and the different properties together with the Messages.

21

Chapter 2 Framework

Symbols (Symbol-Beans) – In SymbolNet symbols are understood as data packages. Each
package is composed of different fields. There are some fields that are fixed for all the
symbols and others that can vary depending on the characteristics of each symbol. The
possible fields appearing in a symbol are:

− ID: When a new symbol is generated it receives an unequivocal identification number.
This way each symbol is differentiated from the rest.

− Type: The type describes which level the symbol belongs to: micro, snapshot,
representation or scenario (see section 2.1.3).

− Class: Each sort of symbol in the SymbolNet must be able to be placed in an
unequivocal symbol-class. The class field specifies the properties that are obligatory and
which are optional in the symbol.

− Timestamp: It is the point of time in which the symbol was generated. If the symbol is
updated the timestamp will change into the current point of time when the update occurs.

− Lifetime: If no lifetime is given, the symbol will exist until an ExpireSymbol-Message
for this symbol is generated. If a lifetime is specified it will exist until its lifetime, given
in milliseconds, expires.

− Properties: This field represents a list of symbol-properties. A symbol can have
properties but it is not obligatory.

Symbol-Properties – Like the symbols, the symbol-properties are given with a specific
structure with different fields. The different properties are:

− Class: Each property-symbol must be able to be located in an unequivocal property-class
which gives the semantic meaning of the property.

− Schema: Each property-class permits different schemas for one property. In a property
the schema gives the meaning of each value.

− Confidence: The confidence gives the reliability of a property-value.

Symbol-Messages – The communications between the different symbolic processing
modules is carried out by means of these messages:

− NewSymbol-Message (NSM): This message transports a new symbol with all the
necessary data to another processing module.

− UpdateProperty-Message (UPM): With this message a module can change the property
of an existing symbol.

− ExpireSymbol-Message (EM): If a module needs to delete a symbol this message will be
sent to all the modules where the symbol exists, those which received the NewSymbol-
Message for that symbol.

22

Chapter 2 Framework

− Heartbeat-Message: These messages are used to synchronize times among processing
modules. These messages are sent by a module which has access to a real-time clock.

SymbolNet uses TCP sockets to send and receive the messages, which provide the possibility
to exchange information among different computers via Ethernet. This fact means a great
advantage since the ARS-PC System can be installed in different computers and it is possible,
this way, to share and optimize the computer performance. For transmission and reception
SymbolNet encodes and decodes messages in a DER way [Dub00].

2.3 Computer Vision

The whole system explained above is a robust system, which, provided with the set of
sensors, can identify accurately the different situations it was designed for. But although it
was considered in previous ARS works [Pra06, Goe06, Ric07] up to now the system lacks a
vision system. It is known that the human sight sense provides approximately the 50%
information got by the different five senses [Big06], it is by providing the system with a
computer-vision that it becomes more robust. Many of the applications already existing can
be supported by the vision system and many others can be only developed this way.

This section tries to give a general idea about the concept of the Computer Vision and what is
intended for. In sections 2.3.2 and 2.3.3 the different tools used to work in this field, software
and hardware are described.

2.3.1 Definition

To find an appropriate definition for Computer Vision is a complicated task, since it is an
immature science and covers many different fields. The first significant works related to
Computer Vision started only 30 years ago [Big06], when computers started being capable to
process great amount of data such as images. Fields like artificial intelligence, neurobiology
or physics are strongly related to the computer vision; however the application in other
complete different disciplines are manifold; proof of this fact are for example the system
developed at the University of Western Ontario for Tracking “Fuzzy” Storms in Doppler
radar Images, the 3D Velocity Fields from Flow Tomography Data developed at the Faculty
of Civil Engineering and Geosciences (University of Technology) in Netherlands or the
Analyzing Size Spectra of Oceanic Air Bubbles project developed at the Heidelberg
University, Germany [JH00]. Some definitions of the term Computer Vision, given by
prestigious investigators in this field are shown next:

− Science which develops the theoretical and algorithmical bases to obtain information
from the real world through one or several images [HS92] .

23

Chapter 2 Framework

− Discipline which develops systems with the capability to interpret the content of natural
scenes [Cas96].

− The goal of computer vision research is to provide computers with humanlike perception
capabilities so that they can sense the environment, understand the sensed data, take
appropriate actions, and learn from this experience in order to enhance future
performance [SCGH06].

Looking at these definitions it is proved the risk that involves giving an exact definition due
to the wide coverage of this field.

2.3.2 Software

Working with computer vision requires many complex algorithms. Study them in depth and
integrate them in a conventional program is a hard task and not the one of this work. To
address reusability and efficiency is necessary to resort to standard data structures and
implementations of classic algorithms, what is affordable with comprehensive code libraries
[MK04]. Nowadays there are some libraries focused in computer vision, for different
platforms and different programming languages. Samples of this fact are the already available
LTI-Lib [LTI05] – object oriented library in C++, tested in Linux and Windows NT LTI05 –
which stopped its development in year 2005, or VIGRA – which runs with some versions of
GNU and Microsoft Visual C++ [VIG06] - that is neither in development anymore. For the
Java programming language are some libraries available too, like the JAVAVIS [JAV07] or
the VASE package [VAS06], however even these libraries were not more than merely
attempts of a consistent end-software package. It is important to remark that all libraries
mentioned here are referred to open source libraries, fundamental question to develop
experimental setups like the one developed in this thesis. Among these variety of libraries
there stands out the one developed by Intel, the OpenCV.

The OpenCV is a set of libraries appointed chiefly for image processing. Its designation
refers to two concepts: Open is because it is an open source library. A main reason for
working with it, because even though OpenCV is originally developed by Intel, at the
moment are many updates, patches and samples developed by selflessly collaborations. The
second part which is CV is, as expected, for computer vision [ORM01].

Since OpenCV started its development in 1999, is the computer vision package with the
wideliest variety of tools for image interpretation existing nowadays, it contains over 500
functions; which is the second reason for having chosen it. These libraries are written all in C
and C++ and are available in Windows, Linux and MacOXD [OCL07]. Is compatible with
Intel Image Processing Libraries (IPL) and composes basic operations like binarization,
filtering, image statistics or pyramids, although it is manly focused on techniques like optical
flow tracking, shape analysis, object segmentation or image 3D reconstruction. The
algorithms are based in flexible data structures coupled with IPL structures; more than half of

24

Chapter 2 Framework

the functions have been optimized taking advantage of the Intel’s architecture [ORM01].
OpenCV is provided with a graphic interface called HighGUI, but its only intended for quick
software prototypes and experimentation setups development.

2.3.3 Hardware

There is an innumerable variety of products available to work with computer vision. Such
frame grabbers, DSPs, high-resolution CCD cameras, etc. the possibility of creating a great
sophisticated video system is there with the corresponding investment of money. However, as
mentioned in section 2.2 and remaining faithful to the SmaKi project principles, the idea is to
use small and inexpensive devices. Hence the ICT provides three USB WebCams for the
realisation of this work and the consequent assembly of the cameras in the kitchen. USB
cameras are furthermore more suitable for experimental setups due to its easy configuration
and its intrinsic portability, always better integrated in the current operative systems. These
three cameras are depicted in Figure 27 and the following paragraphs provide a brief
description.

Creative Live! Cam Optia AF – This camera (depicted in Figure 27 c) is the most
sophisticated of the three. It is mounted with a 2 megapixel sensor and high quality
precision lens. The highest still image resolution is 8 megapixels (3200x2400)
enhanced with software and the video resolution is 1600x1200. The camera has an
auto-focus device and a High-Speed USB 2.0 (backward compatible with USB 1.1)
interface [CWF07].

Logitech QuickCam® Communicate™ STX – This camera is equipped with a high quality
VGA sensor with RightLight™ Technology. It mounts fixed focus, has a video capture
resolution up to 640 x 480 pixels and a maximum rate of 30 frames per second. The
interface is an USB certified [LWS07] (represented in Figure 27 b).

Logitech QuickCam® Messenger – The QuickCam® Messenger (Figure 27 a) is assembled
with a CMOS-Sensor. The resolution for video capturing as well as for still image is
possible up to 640x480 pixels. The maximal frames per second rate is 30 and the
interface equipped is a USB 2.0 certified [LWS07].

Figure 27: Cameras comprising the video system. a) Logitech QuickCam® Communicate™
STX Plus b) Logitech QuickCam® Messenger c) Creative Live! Cam Optia AF.

25

Chapter 2 Framework

The way these three cameras are designated throughout this work are CAM1, CAM2 and
CAM3 respectively. The reason for having chosen these three different cameras has the
answer in the system design. These three cameras have two concrete characteristics that
define them in groups of two, the brand (two Logitech and one Creative) and the video
resolution (two with 640x480 pixel and the other one with 1600x1200). The first question is
important to consider since cameras with the same brand, have (usually) the same drivers and
this entails conflicts with the operative system. It seems obvious that having three cameras
and two different brands the conflict will appear, therefore, to solve the problem, some
measures where taken during the system implementation (they are explained later in section
3.1). The reason of choosing cameras with different video resolution is because the demand
of image definition of some implemented image processing functions is different. Actually
the camera entrusted to carry out more accurate detections (CAM1) is the one which has to
cover greater distances (see Figure 25). Considering the dimensions of the SmaKi, CAM1
should achieve detections at 7,5 metres (approximately) distance, therefore is the camera
which provides greater image resolution.

One feature common to these three cameras is the interface they compose. These three
cameras compose an USB interface what make their use much easier; the plug-and-play
capabilities are more and better developed for the current operative systems. High-speed
serial buses such as the IEEE 1394 and USB 2.0 – or even USB 1.0 – are capable of
transferring hundreds of megabits per second, a rate that greatly achieves the requirements of
any common high-resolution video camera [AIP07]. Furthermore, although OpenCV
supports many different camera variants like PCI, video grabbers or iee1394 (commonly
known as FireWire), the one used most with OpenCV are the USB cameras [OCL07]. This
fact derives in the greater reliability and variety for the functions and complements available
for cameras composing such interface.

26

Chapter 3 System Design

The framework described in Chapter 2 in which this work is placed, involves a very specific
procedure to follow in the system design. Once the ARS bases are defined, the procedure
followed for a complete integration, is to evaluate the different necessities for the different
purpose applications. The aim of this chapter is, firstly to describe what applications are
wanted to be achieved with the integration of the computer-vision system in the ARS-PC
(section 3.1). As next step are defined the different tools needed and the different variants
available to carry out the computer-vision task, which essentially is the content of section 3.3.
Finally, to have success in a full system integration are necessary those components that
connect both systems ARS-PC and ARS-PC Vision, and make they able to communicate as if
they where they where the same module.

3.1 Applications

The applications represent the final result of the whole work, which means what the system is
capable to do once it is properly integrated. The developed system, since it is based on the
ARS principles, is designed for building automation, therefore is intended to be applied not
only in domotics (home automation) but also in offices [Pra06] in the endeavour to recognize
human activities inside the buildings. The applications defined in this work are focused to
proof the concept that the integration of new sensors – in the case in matter, cameras – with
the other sensors – sensors of different nature – provide an information much more consistent
and reliable of the environment. For the ARS-PC Vision were defined three different
applications to accomplish different tasks, all three involve the identification of persons and
are developed by means of the different symbols with support of the computer vision.

3.1.1 Person Tracking

“Person tracking” refers to the capability of the system to identify persons and be able to
track them, in other words, to know their position during the stay in the room. It is an
important fact to consider how many persons are in the room, as well as their relative position

 27

Chapter 3 System Design

to other objects of interest in the SmaKi, since is there where the different defined scenarios
can occur (what is part of the application “scenario recognition” explained in section 3.1.2).

As starting point for this application, it was already mentioned in section 2.1.5 the
consideration of a symbol Person in the ARS-PC with the necessary properties to achieve the
task in which this application is involved. Furthermore the ARS-PC composes nowadays a
robust system which achieves with a great grade of success the person tracking, by means of
several functions, estimation methods, and the proper interpretation of the assembled sensors
[Goe06,Ric07]. Like the symbol Person, the “person tracking” has a great importance since it
is the base for the rest of the applications, not only for those which are considered in this
work, but also in any other further applications that were considered in the SmaKi.

3.1.2 Scenario Recognition

In modern building automation is not enough that systems achieve a representation of the
surrounding world. The entire symbol tree explained in section 2.1 tries to compose a
symbolic representation of the world, but their purpose is to compose the base to identify
different scenarios [Pra06]. Pratl defines scenarios as “sequences of events subject to time
constraints”, but actually this definition seems to be too general to explain the application of
this term through the development of this work. A suitable definition to be concreter taking
into account the environment in which this work is focused, is the one given by [Cro05] that
says that a scenario is “a network of situations for modelling human activity expressed in
terms of relations between entities playing roles”. Considering this two definitions, the
meaning of the concept scenario recognition applied to this work, could be resumed as human
activity tracking, in which the previous mentioned entities are represented by persons and
objects [Goe06].

Extrapolating this last definition to the ARS concept, is deduced that the symbol-level
affected is the representation-symbol level, the one which the respective symbols Person and
Object belong to. Therefore the way the computer-vision provides support to the generation
of the different scenarios is by recognizing specific human features that detect those persons
in the SmaKi, as well as by identifying different characteristics of concrete objects that are
full of interest. The scenarios in which this work is focused are those depicted in Figure 28
which are “Person takes magazine”, “Adult makes coffee”, “Child makes coffee” and “Child
near hot stove”. The first one is a complete new scenario in the ARS-PC symbol architecture,
since the rest of the scenarios mentioned were already considered in the ARS-PC as they
were well described in section 2.1.4. For these three last scenarios the task of the computer
vision represents a merely support function in order to build a more robust system in matter
of detection. The last two mentioned scenarios involve the recognition of children, intended
to recognize dangerous situations, which is task of the application “Child safety” explained in
the next section.

28

Chapter 3 System Design

Figure 28: Scenarios involved in the “Scenario Recognition” application

3.1.3 Child safety

The third and last application for what this work is designed is the “Child safety”. One more
time this application becomes very interesting considering the environment in which this
work is focused, the SmaKi. It seems obvious that the risks for a child are less in an office
than in a kitchen, where an adults negligence, like forgetting the stove working with a child
inside the room, represents a clearly situation of danger for the child.

In order to avoid this hazardous situation, the application “Child safety” is considered as the
one entrusted to take care of persons that were recognized as children, as well as to generate
the corresponding scenarios involved in this matter when these situations of danger are
recognized, which are “Child makes coffee” and “Child near hot stove”. Hence, as it is shown
in Figure 28, this application results a specification of the scenario recognition explained in
the previous section.

3.2 Running Modes

In Figure 26 within section 2.2.3 is represented that the information generated by the sensors
is provided to the ARS-PC by means of the Octobus, nevertheless the system has the
possibility to get old sensor data from the Sensor Database which represents a great
advantage in the development of new software. With the implementation of the Sensor
Database is possible to reproduce indefinitely stored scenarios, so long as the sensor data
remains in the database, thereby the new developed applications can always be tested without
the necessity of presence in the SmaKi.

To take advantage of this situation, the ARS-PC system was provided with two different
program applications or “running modes” as part of the work carried out in [Ric07]. These
two applications were designated ARS_Live and ARS_Database. The first running mode
involves operation in real-time in the SmaKi, therefore the sensor information is got from the
Octobus; since the second one gets the sensor data from the Sensor Database in order to
generate the recorded scenarios. Hence, depending on what configuration is being used, the

29

Chapter 3 System Design

modules in play are different; a graphical representation of this fact is given in Figure 29,
where the figure on the left represents those modules that take part when the ARS is running
in the ARS_Database configuration and the right one in the equivalent real time configuration
called ARS_Live.

Figure 29: Modules in play in the ARS-PC. a) Case ARS_Database. b) Case ARS_Live

Considering these two operation modes in the ARS-PC, for a greater integration level, the
ARS-PC Vision should be provided with two running modes analogous to the other two
mentioned before, and another one additional intended to record scenarios. An important
question to consider in the development of these operation modes, is that in the case of the
ARS-PC Vision, all the incoming information from the sensors (except for the cameras)
arrives through the ARS-PC, what means that the ARS-PC Vision does not really distinguish
when the system is running a real-time or a database application. Therefore some
synchronization methods should be developed, to have consistent information combined
between the two sources of information, cameras and sensors.

3.3 Image Processing

This is the part of the work which represents a complete new feature in the ARS-PC, the one
that concerns directly to the computer-vision field. By means of a computer-vision system,
the SmaKi is provided with “sight sense”. In this section are described the different task in
which the image processing must take part to have success in the recognition of the scenarios.

In section 2.3.2 it was mentioned that the libraries chosen for the image analysis was the
OpenCV package. Furthermore two reason were given for having chosen it, one of them the
great variety of functions and samples the package in matter contains. Those samples give a

30

Chapter 3 System Design

great idea about what the OpenCV can do and how the different functions must be used.
Since those samples have many interesting and useful integrated routines, they were
sometimes used to develop bigger applications. In this section there are described the
different image processing tools needed to develop the final applications mentioned
previously.

3.3.1 Person Detection

The person detection is an important task to consider since it is involved in the process of all
the different applications for what the system is focused. Previously the ARS-PC tried to
identify a person with the sensors available in the SmaKi, which means with the floor
sensors, with the motion detectors or through the activation of any from the other sensors. If a
series of floor sensors are activated or the coffee machine is used, the system understands this
as a human action, and the corresponding symbol Person is registered in the system. This way
the system gives great results, but actually there are many other features that characterize
persons univocally and make its detection much easier and reliable.

A common sample of these characteristics are the contrasts exhibited by a human face and
their spatial relationships [OCL07]. The OpenCV package includes some classifiers – a
classifier is anything that takes a feature set as an input and produces a class label [FP02] – to
take advantage of these features, the so called haarcascade classifiers. These are some files
that contain encoded patterns about Haar-like1 features that consider the existence of oriented
contrasts among regions in the image depending on the object that is considered. The
OpenCV libraries include classifiers for recognizing faces and body shapes in different
variants, full body, lower body, upper body, etc., as well as specific functions to apply those
classifiers with their corresponding configuration [ORM01]. One sample included in the
OpenCV package is the so called facedetect. This sample includes some routines for loading
static images as well as series of images (video applications), and the subsequently
application of the corresponding classifiers for the face detection. In Figure 30 is given a
demonstration of this sample in which the program looks for the mentioned pattern, in order
to detect the faces in the image. The depicted result shows some limitations of this program.
In the image are six faces recognizable, nevertheless there are only four detected. The face in
the background is not detected due to the excessive occlusion, and the other – the girl at the
front – although it is clearly recognizable (there is no occlusion, eyes and mouth are clearly
defined too) is not detected either.

1. The Haar-like features are so called because they share similarities with the Haar wavelets.

31

Chapter 3 System Design

Figure 30: facedetect sample demonstration.

For the development of this task, considering the already given sample supposes a great
simplification in sense of developing a person detection method; nevertheless it is important
to take into account that the way the cameras are mounted provide certain advantages (or
disadvantages) depending on what method is applied. These two considerations will be the
starting point for the implementation of this task, described in the next chapter (in section
4.2.2).

3.3.2 Shape Distinction

The shape recognition is one of the greatest advantages of using cameras to recognize
features from a specific environment or scenario. The term “shape” in this work has the same
meaning that the one given by [Sin02], who refers to shape as “the invariant geometrical
properties among a set of special features of an object”.

A similar problem, as the one explained in the previous section, occurs when a specific object
wants to be recognized. Before the development of this work the ARS-PC recognized a new
object in the SmaKi with no more information that the one given through the activation of the
tactile floor sensors. That means that if the object in matter is on the table, on the bookshelf
or anywhere where the activation of the floor sensors is not involved, the object will not be
recognized. Even if an object is detected, the system is not able to recognize what it is,
actually a person is recognized as an object until he/she makes some movements (or specific
defined actions) around the room.

The shape distinction, integrated in specific visual recognition functions, not only composes
part of the basis for the application “Scenario Recognition”, as it provides great support in the
detection of objects, it also represents a very useful tool to accomplish other tasks, as it could
be the possible detection of specific contours in the room in order to set points of reference,

32

Chapter 3 System Design

what is for example necessary in processes like the camera calibration (explained in section
3.3.4) .

Most of the components in an environment such as the SmaKi, describe shapes that can be
approximated to ellipses or rectangles. Taking this as a premise it is important the
development of functions that achieve the recognition of such kind of shapes, regardless of
the final application of those functions. Since the shape detection is a very common task in
image processing [Sin02], the OpenCv package includes specific methods comprising the
detection of polygonal contours: squares, trapezoids, shapes with multiple variants and even
circles, detectable with the proper adjust of some parameters [ORM01]. Of course the image
must be treated with additional processes, like segmentation or noise filtering [Sin02], to
achieve a proper detection of the desired shape. Furthermore this software package contains
one sample called squares that uses the mentioned function to find rectangles in static images
with great results.

3.3.3 Background Subtraction

A fundamental task in many computer vision applications is the detection of objects in
movement; changing pixels in an image provide an important feature for object detection and
recognition [SS02]. Motion is a powerful feature of image sequences, revealing the dynamics
of scenes by relating spatial features to temporal changes [JH00].Considering the
environment in which this work is focused, this kind of detection not only means a great
support to the other sensors in the SmaKi in the person tracking task – the aim of tracking is
to automatically find the same object in an adjacent frame from a video sequence once it is
initialized [CY05] – but also involves a great tool in the recognition of different scenarios. To
carry out this task, a common procedure is the background subtraction. This technique
involves an observed image with an estimate of the image if it contained no objects of
interest. The regions of the image where there is a significant difference between the
observed and the estimated images indicate the placement of the object of interest. The
designation “background subtraction” derives from the mere technique of subtracting the
observed image from the estimated image and thresholding the result to generate the objects
of interest.

There are many procedures to develop the background subtraction, starting with a simple
difference between images [SS02], until using more complex algorithms like the Lukas-
Kanade method that detects the optical flow considering the variation of the pixels intensity
[LK81]. The background subtraction is a procedure that entails many challenges, like the
light variation or the miss detection of unwanted non-stationary objects in the image.

The OpenCv package includes some samples that involve the motion detection by means of
background subtraction using different procedures. The sample called motempl includes
several routines to detect optical flow in a video sequence, but in essence uses a
differentiation method between images with a specific threshold. Another sample is the one

33

Chapter 3 System Design

called lkdemo which applies a variant of the Lukas-Kanade algorithm to detect motion in a
video sequence by inserting in the image points that respond to the guidelines set by the
algorithm in matter. Figure 31 shows the procedure of this demo-sample in which the
program inserts several points (called later as LK-points) in the image contours that
subsequently follow the optical flow from the corresponding points in the image.

Figure 31: lkdemo sample demonstration.

3.3.4 Camera Calibration and SPD formula

Computer vision used in person tracking is normally carried out by means of two or more
than two cameras. The reason of this fact resides in the mathematical incapacity that supposes
to estimate sizes and distances with an only 2D view [Zan98, FP02]. The three-dimensional
view is generated since two cameras are properly calibrated, which allows the system to get
depth perception through triangulation. Hence, it is important to remark, that the concept of
camera calibration used throughout this work is not the one intended to create a 3D view
explained before, but to configure the camera coordinates and focusing in order accomplish
properly the application in matter.

It was described in section 2.3.3 that three cameras were provided by the ICT for the
development of this work, but due to the purposes set in the different applications, it was
decided to use each camera focusing to different regions of interest without any
synchronization among them, in sense of generating the mentioned 3D view. This decision
leaves the system with three independent 2D views and the problem of the distances
reappears. To solve it a mathematical relation among pixels, real dimensions and distances
was experimentally deduced and subsequently designated as SPD formula (Size Pixel
Distance). This formula shows that the real size of a concrete object is directly proportional to
the multiplication from the distance camera-object with the number of pixels from the object
in the camera image (see Figure 32). Furthermore the relation among these three variables
results in a constant that is calculated taking as reference the same three variables for another
object which values were previously measured.

34

Chapter 3 System Design

Figure 32: SPD formula sketch.

The number of pixels in image from the object in matter is normally a known value,
especially when the whole shape of the object is clearly defined in the image. That means that
in the SPD formula two unknowns remain, the real size of the object and the distance
between the camera and that object, it is in the calculation of this two variables where the
camera calibration is necessary. There are two possible ways to solve this problem, actually
depending on the unknown desired to be resolved. If the searched variable is the size of a
concrete object, considering the proper integration of the cameras in the SmaKi, it is possible
to estimate the distance with the information provided by the tactile floor sensors, which give
their position in the room each time they are activated (see section 2.2.2). If the position of
the camera in the room is a known value (which is part of the calibration task), the distance
between the camera and the object is resolved with a simply coordinates adjust. Consequently
with the proper use of the SPD formula the value of the remaining variable is not an unknown
anymore. Analogously, it is possible to calculate the distance between the camera and the
object if the real size from the object is known. With this idea, if the shape of an element can
be recognized and its size is a known value, the distance in matter is directly calculated with
the SPD formula. If the object used for this last operation is fixed in a known position in the
SmaKi, with the operation mode explained previously, the position of the camera in the room
is deduced, actually a calibration from the camera is made.

3.3.5 Image Aberrations

As it was discussed in the previous section, in practice, the world and camera coordinate
systems are related by a set of physical parameters, such as the size of the pixels, the position
of the principal point, the position and orientation of the camera (tasks composing the camera
calibration) and furthermore the focal length of the lens. Until know it was assumed that

35

Chapter 3 System Design

cameras are equipped with ideal lens, however all cameras suffer from a number of intrinsic
aberrations that must be taken into account in order to design a consistent system.

Radial distortion – A type of an aberration that depends on the distance between the imaged
point and the optical axis. This effect is represented in Figure 33, where the figure on the left
represents the ideal camera geometry and the one on right is the one resulting with the radial
distortion effect. Geometrically, this distortion increases the distance between the image
centre (c), and the point p – i.e. the displacement increases with the object height as the rays
become more inclined. It is also deduced from figure in matter that the radial distortion does
not an affect to the direction of the vector joining these two points.

Figure 33: (Left) Ideal camera geometry (Right) Camera geometry affected by radial distortion

Chromatic distortion – Most of the aberrations related with the camera lens are caused of
monochromatic aberrations which are caused by the nonlinearity of the law of refraction. The
change of refractive index with wavelength causes polychromatic aberrations [JH00] – i.e.
rays of different colours are bent differently by a lens. Therefore, the same scene spot is
different for light of different wavelengths. For example, the image of a very sharp black-
white edge may derive in a blurring or ramp of intensity change spread over several pixels in
the image [HS92].

As the two mentioned aberrations there are many others due to physical phenomena
concerning to the ray lights and the non-ideal camera components. For example, the spherical
aberration, coma and astigmatism, which cause image degradations by blurring [JH00], but
their origin as well as their solution are out of the scope of this thesis. Actually, although the
importance of the mentioned aberrations, the one designated as radial distortion is the only
one considered throughout this work (application in 4.2.3), due to the adverse effects
introduced in some of the calculations carried out during the implementation.

3.3.6 Image Treating

Depending on the end application an image treating or pre-processing in the spatial domain is
an important step to make the results more suitable for classification than were the original
data. It eliminates different type of noise, sharpens the image features, such edges or
boundaries or simply modifies its morphology to obtain concrete results. This process does

36

Chapter 3 System Design

not increase the inherent information contained in the image, however it increases the
dynamic range of the intrinsic features.

Histogram modification – The histogram of an image represents the relative occurrences of
the different grey levels in the image. Histogram modification procedure modifies an image
so that its histogram has a desired shape. This technique is used to enhance the image contrast
and is a necessary condition for the subsequently application of other image treating methods.

Smoothing – Techniques which compose neighbourhood processing – in contrast to pixel
processing – use the local context information for specific pixel processing. Commonly
pixels close to each other have approximately the same grey levels, as exception for those
which compose boundaries. The smoothing technique is commonly used to remove a kind of
noise known as “salt-and-pepper noise”; it is a fine noise, produced by usually isolated
points. This means that each point has non-noise neighbours [Sin02]. Hence the natural
attempt is to reduce the effect of this noise by replacing each pixel with a weighted average of
its neighbours.

Dilation – Is a morphological transformation – or process that affects do the geometrical
structure within the image – that is used to remove very small group of pixels and join up
groups that are closed together. Using dilation large groups can be joined up by “thickening”
their boundaries. Figure 34 shows an example of the dilation procedure, in which gaps are
jumped by attaching 3x3 neighbourhoods to each pixel; the relevant pixels are greyed on the
right.

Figure 34: Representation of the dilation technique (Left) Original image.
(Right) Image with dilation effect.

Erode – The function Erode – also known as Erosion – like the dilation, represents a
morphological transformation, however, the function in matter is intended to remove very
small groups of pixels. This is carried out when a block of pixels do not fit inside a small
group. In Figure 35 is illustrated the erosion procedure in which the small groups of dark
pixels are lighted (greyed in this case) when they do not lie at the centre of a 3x3 dark
neighbourhood.

37

Chapter 3 System Design

Figure 35: Representation of the erode technique. (Left) Original Image.
(Right) Image with erode effect.

Frequently, these two operations (dilation and erode) are used together, either dilation of an
image followed by erosion of the dilated result, or erosion of an image followed by dilation
of the eroded result. With this procedure it is possible to eliminate some kind of noise or
specific image details that are smaller than the structuring element – e.g. notches, blobs, gaps,
etc. – while maintaining the essential geometric shape of the image. The combination of these
two functions have a result similar to the smoothing effect [Sin02] .

Segmentation – This technique refers to the procedure of partitioning an image into multiple
homogeneous regions; homogeneous in uniform function with some property, such as colour,
intensity or texture. The resulting segmented image is a set of regions that cover the entire
image. A particular case of segmentation is the technique called thresholding where
individual pixels in a greyscale are showed if their value is greater than a specific threshold
value or ignored otherwise. Figure 36 shows the result of applying thresholding with different
levels of threshold; the one in the centre with a value of 701 recognizes the black object, those
with less intensity. The one on the right with an almost three times larger the previous
threshold identifies objects with greater intensity, the circle on the right and the small coin
from the left.

Figure 36: Application of contours tracing combined with thresholding in different levels.
(Left) Original Image. (Centre) Threshold value equal 70 (Right) Threshold value equal 191.

1. This value is given in a scale of 0 to 255. Resulting pictures obtained using the fitellipse demo,
sample composing the OpenCV package.

38

Chapter 3 System Design

Edge detection and Contour Tracing – Strongly related with the shape distinction
described in section 3.3.2, the edge detection is an important technique in the image treating
and the scene analysis. “An edge in an image is a contour across which the brightness of the
image changes abruptly in magnitude or in the rate of change magnitude” [RW96]. The goal
of contour tracing follows another procedure as the edge detection, in which the boundary is
traced by properly ordering successive edge points. A boundary can be viewed as a path
formed by connecting the edge elements together. Thereby the edge pixels will represent
worthier information that can characterize the shape of an object and its geometric features.

3.4 Interconnectors

Making analogy with the human senses, it is obvious that a greater and more accurate
knowledge of the environment is achieved by means of the proper contrast among the five
senses. Extrapolating this idea to the SmaKi, for a grater control about what happens inside it,
the different sensors composing the SmaKi, tactile floor sensors, cameras and microphones
(considered in other works [Pra06]), among others, should have full communication among
them.

Nowadays, all the information provided by the sensors, with the exception of those generated
by cameras, is managed by means of the ARS-PC and the language in which the entire code
is written is Java. All the symbolic processing modules, the graphic interfaces, even the
primitive version of the SymbolNet are developed in Java, but the OpenCV package is
written in C and C++. That means that the whole vision system needs its own code, in the
sense of symbolic processing modules, a proper SymbolNet version as well as the necessary
interconnectors in the endeavour for a complete system integration.

The interconnectors that compose the ARS-PC Vision are divided in this section in two parts,
those which are necessary for the symbolic data exchange, like a specific sender and the
corresponding receiver (section 3.4.1), and others that support the assembly and disassembly
of symbolic packages (section 3.4.2).

3.4.1 Two-way connection

Currently the ARS-PC system is composed of some classes that make the network connection
with all the necessary modules, like the Octobus, the SmaKi Visualization module
(developed in [Sch07]), and of course the ARS-PC Vision. These classes, TcpSender and
TcpReceiver [Hol06], are part of the SymbolNet package and as it is obvious, they use the
TCP network protocol to send and receive information between different symbolic processing
modules. Moreover, to accomplish the connection establishment in both ways those functions
implement a specific handshake in which the version of the SymbolNet used from the two
parts in the connection is proved. Hence to develop a consistent system, the functions

39

Chapter 3 System Design

implemented in the ARS-PC Vision are designed with the same specifications explained
previously.

Once the connection is established, the ARS-PC sends constantly symbolic data packages in
DER [Dub00] encoded, as soon as they are generated. That means that the receiver in the
ARS-PC Vision must compose a procedure that takes into account this constant data flow and
store it properly for the corresponding decoding and treatment. Analogously the ARS-PC
Vision needs a procedure to assemble data in the corresponding symbolic packages
(explained in the next section), as well as a method to encode those packages properly and
send them through the network.

3.4.2 Symbolic Processing

As explained in previous sections, the communication among the modules in the ARS-PC is
made by means of symbolic data packages. Depending on the type of message (NSM, UPM
or EM see section 2.2.4) the packages contain different fields, but all of them maintain the
SymbolNet structure.

Once the ARS-PC Vision receives one message and is successfully decoded, some
procedures are necessary to check what kind of message is received, as well as some methods
to get the wanted information within the incoming messages. The first one designated in this
work as proof functions, can be developed with concrete knowledge from the SymbolNet
structure, by looking inside of the proper fields from the message. The other functions are
designated later as getValues functions, are iterative routines that look for a concrete value in
a symbolic message and facilitate it for the further use of other functions.

Furthermore, the ARS-PC Vision must implement some functions to achieve the inverse
process, which composes some methods that achieve the assembly of new messages
containing the important results obtained in there, for the subsequently sending in ARS-PC
direction. To build a consistent system the symbolic messages should be those from the
SymbolNet package explained in section 2.2.4, composing the respective fields depending on
the kind of message and considering the already existing symbols and the properties that
compose them, which are briefly enumerated in section 2.1. The kind of symbols sent by the
cameras should always be from the microsymbol level, as the rest of the data source devices
do [Pra06]. The camera should be in the same level as the floor sensors or motion detectors or
in any case, in the same level as all the sensors considered in the system, which is clearly
depicted in Figure 20 as the sensor layer.

40

Chapter 4 System Integration

In Chapter 3 the different purposes and necessities for the aim of this work were described as
part of the system design. Making analogy with the previous chapter, the ARS-PC Vision
system was divided in three packages to accomplish the different tasks the system was
designed for. In Figure 37 is shown the resulting sketch of these three packages and
enumerated the different modules that each one contains enumerated.

Figure 37: ARS PC-Vision modules distribution

These three packages and the section belonging to the system applications are described in
this chapter following the bottom-top principle. First of all, to accomplish the integration
between ARS-PC and ARS-PC Vision the package designated as iCon (interconnectors) is
described in section 4.1 together with the modules that carry out the connection between the
two systems and the necessary symbolic processing for the proper management of the
information. After that, in section 4.2 is described the imgPro (image processing) package,
which contains all the modules designated for the computer vision tasks. Finally, as the last

 41

Chapter 4 System Integration

part of the integration, in section 4.3 is described the package interface which
implements the necessary modules for the control of the program.

4.1 Interconnectors (iCon)

It was described in section 3.4 the necessity of some modules to achieve the proper
interconnection among the already existing symbolic modules composing the ARS-PC and
those which represent the network interface with the ARS-PC Vision. The iCon package
contains all the modules that deal with symbols or symbolic information. This layer is
entrusted to receive the information from the ARS-PC, make it accessible for the computer-
vision layer and send the obtained results back to the ARS-PC with the proper format. All the
functions composing each module in this package are based in the SymbolNet.

Figure 38: iCon package break down with system interconnections.

Figure 38 shows the iCon package with its composing modules and the corresponding
connections among them. From this graph is deduced the placement of this package in the
whole system, the connection with the ARS-PC system and the relation with the imgPro –
or computer-vision layer – package (explained next in section 4.2). The iCon package
represents the interface between the ARS-PC and the ARS-PC Vision, obtains the
information generated in the ARS-PC and manages the data doing it intelligible for the rest of
the system at hand. Consequently the inverse procedure is considered too, the information
generated in the imgPro is formatted and sent back to the ARS-PC by means of the iCon
package. The modules depicted in Figure 38 are briefly described next:

receiver – This module is entrusted with the network tasks. It is composed by a set of
functions that treat directly with the ARS-PC and manages the constant data flow incoming in
this direction.

42

Chapter 4 System Integration

proofSymbols – The module proofSymbols is composed by several functions, which are
designed to check concrete symbols in order to prove its utility for the system.

proofPersons – Due to the importance of the symbol Person in the entire system, this
module, as a specialization of the previously mentioned module, is only focused in verifying
the symbol in matter. Furthermore it contains other methods to manage the information
contained within the symbol Person.

list – In order to register the number of (symbol) persons in the system is implemented this
module, which manages a list of such kind of symbols under the control of the module
proofPerson.

getValues – As part of the process of managing the symbols, this module is composed by
several functions that are designed in to extract concrete information specific for different
symbols in order to make it intelligible to the other applications.

newSymbolMessage – This module is entrusted to do the inverse process as the one
explained before, as it generates the new symbols with the information obtained through the
computer-vision layer.

sender – The sender module takes part in the network parts, as the previous receiver
module does. It is essentially designated to send each new symbol generated in the ARS-PC
Vision in the ARS-PC direction. Together with the receiver package, this package
represents the interface ARS-PC/ARS-PC Vision.

4.1.1 Sender

In the module called sender two functions to accomplish the function of a
“SymbolNetTcpSender” are developed. The first one called connectSender establishes
the TCP connection with the ARS-PC which is supposedly waiting for the connection coming
from the ARS-PC Vision. The other function in this module, the one designated as
sendSymbol, is the one entrusted to send the symbol-messages (see section 2.2.4) with the
corresponding encode in the ARS-PC direction. Those messages are previously packaged
with the proper SymbolNet structure by means of the NewSymbolMessages functions
explained later in section 4.1.3.

4.1.2 Receiver

The receiver in the ARS-PC Vision is placed in the module with same name. The module
receiver is composed of two functions, connectReceiver and receiverLoop. The
first function makes a TCP connection, listens to a network port and waits for a connection
from a “SymbolNetTcpSender” and the second one is entrusted to manage the incoming
symbolic data flow. After the connection is successfully established, the function
receiverLoop can be always called if it is necessary. Due to the kind of implementation

43

Chapter 4 System Integration

of the system, this function must be non-blocking, since the system must attend to other
functions like the one which manages the video capturing (further explanation in section
4.3.3), therefore the period the system remains in the loop is controlled by time.
The function works mainly considering the state of three components, the decoder, the buffer
and the socket, and remains in the loop until some specific conditions are fulfilled. The
decoder can have three different states, RC_OK, which indicates that the decoding was
successfully accomplished, RC_WMORE, means that the decoder expects more data, and
RC_FAIL, which results when a failure occurred during data decoding. Moreover it is
important to consider the state of the buffer, whether there is data in it or, on the contrary it is
empty. And finally, after considering the previous variables, the program must check if there
is any data in the socket or not. The different steps followed in the loop are shown in Figure
39 and described next:

Actually the permanence of the system in the receiver loop is controlled by means of two
conditions. The first one is a temporary condition, which does not permit the system to
remain in the loop more than a specific time given in milliseconds. The other condition is
given by the importance of a specific symbol. In the case the system is waiting for a specific
symbol, what happens for example at the beginning of the system in the Database Mode (see
section 4.3.4), the program keeps looping until the symbol is received. On the other hand it is
possible that the system must exit without waiting for the time condition to expire, because
the information arrived must be immediately processed by another module.

If the conditions are the suitable to remain in the loop, the function looks if the decoder needs
more data or if the buffer is empty. Whether one of both cases is affirmative, the system
checks if the socket for the consequently reading and decoding. After the decoder
accomplishes a successful decoding, the received message is treated by different functions –
like those from the “proof symbols” group or the “get values” (explained in sections 4.1.4
and 4.1.7 respectively) – to manage the information incoming within the messages.

44

Chapter 4 System Integration

Figure 39: receiverLoop flowchart

45

Chapter 4 System Integration

4.1.3 NewSymbolMessage modules

As part of the system design was discussed in 3.4.2 the necessity of some concrete modules,
specific for each kind of symbol generated, to make the corresponding packages with the
symbolic information. In section 2.2.4 it was given a superficial idea about the SymbolNet,
but the necessary features of this software-package to develop this work. The possible
messages to use with this protocol were enumerated as well as the fields and properties that
compose the structure of a symbol. In this section the possible messages the ARS-PC Vision
is able to generate as the result of any kind of detection by means of the cameras, are
described. The only question that differs from the proposed structure of a symbol is that the
class given for each symbol sent by the ARS-PC Vision corresponds to the group of the
sensors; each type of message from the ARS-PC Vision will be treated as a sensor value. This
consideration was taken due to the great simplification it represent in order to integrate these
symbols in the system. The different symbol-messages the ARS-PC Vision generates are
described next:

nsmCup – The module entrusted to encapsulate in a NewSymbol-Message the important data
related to the “cup detection” is the nsmCup. The main routine is the called nsmCup; it
gives the entire structure for the symbol, with its different fields and properties, and calls the
other routines to make sub-encapsulations. In this module there are two methods that build
the property structure, for its subsequent addition to the symbol structure. These two
functions are mpCup and mpIDcup (“make property Cup” and “make property ID cup”,
respectively). Each one sets the suitable class and scheme for each property, and gets the
values for these properties from other two functions, mpvCup and mpvIDcup (“make
property value Cup and “make property value ID cup”). The first one sets the value
concerning the status of the “cup detection”, information incoming from the module cupDet
described in section 4.2.6. The other one inserts the sensor-ID designated to this symbol in
the mpIDcup function. The diagram of the module nsmCup with its methods and
connections among them is shown in Figure 40.

Figure 40: nsmCup module diagram.

46

Chapter 4 System Integration

nsmHeight – In the module nsmHeight is the person-height built as a NewSymbol-
Message. This module follows the same pattern as the previous ones. In this case there are
three different properties included in the symbol, which are “height”, “sensor-ID” and
“position”, added with their consequent property structure by the functions mpHeight,
mpIDheight and mpPosition respectively. The value for the property “height” is
inserted by the function mpvHeight which takes the value directly from the “person height
detection”, carried out by the sizeEst module (see section 4.2.3). The mpvIDheight
method adds the “sensor-ID” which makes this symbol univocal among the other sensors
(remember that symbols sent from ARS-PC Vision are considered each one as sensors, in the
same level as the floor sensors or the contact switches). For the last property value in this
symbol, there is the mpvPosition which sets the position where the height detection was
carried out. This position is given through three values, which correspond to the SmaKi
coordinates, width, depth and height. In Figure 41 is shown the structure of the module in
matter, the interconnections, and the difference between the structure of the module nsmCup
with the new property (position) added.

Figure 41: nsmHeight module diagram.

nsmMagaz – The module that generates the NewSymbol-Message with the necessary
information from the “magazine control” is the one called nsmMagaz. Like in the other
NewSymbol-Message modules, there is a main function nsmMagaz, which gives the
characteristics which make the symbol univocal, like the symbol class and scheme.
Furthermore, it assembles the different symbol properties in the symbol structure. In this
symbol only two properties are added, the status of the bookshelf (if magazines are missing
or not) and the one mandatory for all the symbols generated in the ARS-PC Vision, the
“sensor-ID”. Hence there are two functions needed for building the symbol-property structure
and other two give their respective property-values. These functions are mpMagaz,

47

Chapter 4 System Integration

mpIDmagaz, mpvMagaz and mpIDmagaz, with analogous connection to the previous
modules.

4.1.4 Module: Proof Symbols

It was mentioned in section 2.2.4 that symbols are understood as data packages, since each
symbol is composed by some fields and different properties. To recognize the incoming
symbols, to distinguish one kind from the others, it is necessary to look into the fields
composing each symbol (remember that each symbol and its property are strictly defined by
respective classes). Following the guidelines described in section 3.4.2 the module
proofSymbol contains different functions to recognize or “prove” what kind of symbol is
being managed. In the most of the cases the task consists in looking for the class and the
schema that defines univocally each symbol. All these functions return true or false,
depending on whether the conditions established for each routine are accomplished or not.

proofRectangle – This routine is designed to check if the symbol in matter is a microsymbol
object and if the property position appears in it. Since the property position in this symbol is
given as a rectangle, the function proofRectangle proves if the field schema corresponds
to a rectangle.

proofFootstep – The function proofFootstep, looks into the class of the managed
symbol, checks if it corresponds to the class footstep and makes sure that the current symbol
contains the property position given as a rectangle.

proofGait – This function checks if the symbol in matter is a symbol Gait and if the property
“start position” (given with the schema point) appears in the symbol.

proofDoorStatus – Function proofDoorStatus, returns true if the treated symbol has the
corresponding class to the microsymbol “Door Status”.

proofHBmsg – This function checks if the incoming symbol is a HeartBeat-Message. The
application of this function is merely question of performance optimization. HeartBeat-
Messages are sent constantly from ARS-PC to the ARS-PC Vision. Since the ARS-PC Vision
(in principle) does not use such messages, the system in matter uses this function to ignore
these messages directly when it is received.

All these functions, with the exception of proofHBmsg, check only the symbol when it
appears as a NewSymbol-Message. If it is necessary to control the update of one of these
symbols, it will be made by means of its ID. There is another function called proofPerson
which has a similar purpose of the functions mentioned before, but due to its complexity it is
necessary to place it in another module, accompanied with other routines. Of course “proof”
functions can be made for each symbol but the different functions developed in this work
were enough to fulfil the requirements of the system.

48

Chapter 4 System Integration

4.1.5 Module: Proof Person

The aim of this module, with the support of the module explained in the next section (module
list), is to control the number of persons in the room and its relative position to different
objects in the SmaKi. The proofPerson module contains two functions, proofPerson
and nearObj, both strongly connected.

nearObj - The nearObj function is one of the “proof” functions since it checks if the
managed symbol has the property Near. As explained in section 2.1.5 the property near
appears with the symbol person, when this person is near to a concrete object in the SmaKi.
The value of the property is univocal, depending on what object the person is near to. So the
function nearObj will return true if the person is near to that object. This function considers
two different kind of incoming messages, NSM and UPM.

When the function treats a NSM it looks inside the symbol for the class corresponding to
property near, if it is found, its property value will be compared with the value which
references to the wanted object. If it matches, the function will return true, the person will be
considered near the object. In case the message in matter is an UPM two possibilities must be
considered. Firstly, if the symbol (person), the UPM is sent for, was already considered as
near the object, only if the property near appears within the symbol with another value means
that the person is not near the object. Secondly if the property near does not appear, is
because the person is still near the object. However in the case that the symbol treated, was
not considered before executing the function as near the object, the routine looks for the
property near and its current value in the case the property appears. The opposite case will
occur if the person is not near the object. Of course for both cases, it can happen that the
value obtained in the property value is not the one expected, which would mean that the
person is near an unwanted object.

This function does not care about what class the symbol belongs to, since nearObj is called
inside the proofPerson routine and despite this fact the property near can only appear
within the symbol person.

proofPerson – Depending on the type of message received (NSM, UPM or ES) the function
will react differently. If the incoming is a NSM, it is necessary to check to what class it
belongs to. If the symbol is a representation-symbol person, since it is a NSM, the person will
be considered new in the room and will be added to a list, where all the subsequent persons
will be added to. The symbol is stored in the list with its ID and the information about its
relative position to a concrete object (by means of function nearObj).

In case the received symbol is an UPM, the mentioned list will be searched through looking
for a match between the ID from this last symbol and any other contained in the list. This
match will mean that this message is an update for an existing symbol. With the help of
function nearObj it will be checked if the person in matter is now near an object, still near

49

Chapter 4 System Integration

an object or gone from an object. After that the list will be updated with the new values
concerning that person. If the message is an ES (see section 2.2.4) one, it will be proved if the
ID contained in the message belongs to a person from the list. In the affirmative case, the
person will be deleted from the list as well as the related information. All the functions
related to the management of the list are contained in the module described next; module
list.

4.1.6 Module: List

The module list is composed of three functions to manage the list which controls the
quantity of persons in the room. It is designed to generate, delete and find persons in the list
and manage the properties containing each symbol.

generateElement – The routine generateElement adds to the list a new person. The
person is inserted in the list with its ID (symbol-ID) and with properties concerning to its
relative position to a concrete object.

deleteElement – The function deleteElement looks into the list for a given ID, and in
the case of match, the person with its respective properties is deleted.

findPersonInList – The function findPersonInList searches in the list for a given ID,
and returns true if the ID is found. That means that the person with that ID already exists in
the list, in other words, the person exists in the SmaKi.

This module is focused for the application person tracking as well as the recognition of
scenarios, since it controls which persons are in the room (through its symbol-ID, explained
in section 2.2.4), the number of persons and also registers the relative position to the fixed
items in the SmaKi, such as the coffee machine, the fridge or the bookshelf. In this work this
module is directly applied to the recognition of the scenario “Person takes magazine”
explained later in section 4.4.3.

4.1.7 Module: Get Values

Once again it is important to remark that the symbols managed in the whole system are
understood as data packages. Therefore it was already mentioned in section 3.4.2 the
necessity of some functions to extract a concrete value within a specific symbol. Hence, the
module getValues is designed to extract this information and make it useful for other
applications. The operation mode is different depending on the type of message (NSM, UPM
or ES) and the way each function extract the information may be different depending on what
kind of data is desired to be obtained. Usually, if an incoming symbol is proved it is because
some information from this symbol is needed or relevant. Hence routines from getValues
module will be normally called after a function from the module proofSymbols is
executed. The different routines included in this module are described next:

50

Chapter 4 System Integration

getTimestamp – As explained in section 2.2.4, all the symbols have a field in which the
generation or update (in case of UPM) timestamp is contained. The function
getTimestamp returns the timestamp of the corresponding symbol independently of what
symbol class is treated.

getDoorStatus – For the right operation of the system, this function should be called after the
proofDoorStatus function. The routine getDoorStatus looks into the properties of
the symbol “Door status” and returns the current state of the door, if it is open or closed.

getPosGait – This function needs the results from routine proofGait. If the result given
by proofGait is positive, getPosGait returns the value of the property “Position”
(described in section 2.1.5) from symbol Gait. The symbol Gait represents the trace of one
person in the room, and after its generation, it always reappears as a symbol-update. Due to
this fact and considering that the symbol-class does not appear in the UPM, the only way to
manage the right symbol after its generation is controlling its ID.

Figure 42: Outcome for incoming snapshot-symbol Gait: a) NewSymbol-Message, b)
respective UpdateProperty-Message.

Figure 42 shows the outcome of printing an incoming NewSymbol-Message and the
UpdateProperty-Message for the same symbol (Figure 42 a) and b) respectively). These both
messages belong to the snapshot-symbol Gait, what is defined by its class (circled in red) in
the case of the NSM and it is recognized later in the UPM by means of its ID (the same

51

Chapter 4 System Integration

symbol-ID in both messages, in both pictures, depicted in blue). The values wanted in this
case are those which are contained in the second property, which corresponds to the property
Position, given in two coordinates (actually in three, nevertheless the third one represents the
height coordinate in the room always given with a null value). Hence the function
getPosGait returns the first and the second value of the second property, which represents
the current position, in x-y coordinates, where the gait was generated.

getPosObj – The function getPosObj returns the current position from a detected object.
This value is the result of looking into the microsymbol object. The microsymbol object is
directly generated by the information coming from the tactile floor sensors. Explained
previously in section 2.2.2 is that those sensors give three points to define their position.
Hence the property position concerning to that symbol is given with these three points.

Figure 43: Calculation of the centre point within getPosObj function

The function getPosObj with the only information from two of these points, calculates the
centre of the described square with a simply mathematical operation (see Figure 43), and
returns this value as the current position from the object in the room. This function is
supported by the proofRectangle function described in the previous section.

4.2 Image Processing (imgPro)

All functions entrusted to make any image processing or those entrusted to support this task
are contained in this package and they represent the computer-vision layer.

Figure 44: Modules-cameras correspondence

52

Chapter 4 System Integration

In section 2.3.3 it was mentioned the availability of three different cameras for the
development of this work and in section 2.2.2 was described the placement and focusing for
each camera in the room. Following the requirements for each application, each camera is
assigned to different modules. These correspondences are shown in Figure 44 and briefly
described next:

doorFinder – This module is intended to find the main door in the camera CAM1 view field
in order to set an univocal reference in the room. Such reference is necessary to carry out
other applications like the one designated for the camera calibration.

faceDet – The faceDet (“face detection”) module is entrusted to locate persons in the
room. This is achieved by detecting faces in the camera CAM1 view field. Moreover it
provides useful information to the operation of other applications designated to the same
camera.

sizeEst – This package, which designation derives from “size estimation”, achieves the
estimation of the height of a detected person. With this module it is possible to carry out the
distinction among children and adults. Actually the rest of the modules designated for this
camera (CAM1) are focused to provide necessary information to the procedure of this
application.

camCal – The module camCal or “camera calibration” is a set of functions specific for
each camera that needs some kind of calibration. Depending on the end-application
designated for the camera, the calibration has different purposes and therefore it follows
different procedures.

magaz – The designation “magaz” derives from “magazine”. This module is the one
entrusted to do the necessary procedures to achieve the control of the bookshelf, necessary for
the recognition of the scenario “Person takes magazine”, carried out by means of camera
CAM2.

cupDet – The cupDet (“cup detection”) module is the one designed to detect cups (coffee
cups) in the camera CAM3 view field. This package is developed in order to provide support
to the recognition of those scenarios in which the act of making coffee is involved.

4.2.1 Door Finder

In the endeavour to set a reference for the camera calibration, a concrete object with univocal
features in the SmaKi was selected. This is the case of the main door. Although the picture
from Figure 45 does not correspond to the one from the SmaKi, this one has the same
physical properties: the same dark blue colour, the same measures (87x200cm) and the same
white background. No other object in the SmaKi has these properties and its placement in the
room is privileged, centred on the left side of the room.

53

Chapter 4 System Integration

One interesting method to be used to identify the main door in the room is using colour
histograms – a colour histogram is a record of the number of pixels in an image or a region
that falls into particular quantization buckets in some colour space [FP02] - as it seems
obvious in Figure 45, the colour from the door is unmistakable. But apart from some reasons
that are explained next, it was mentioned in section 3.3.2 that the OpenCv package composes
a great sample that is the squares, which tries to find squares in the image. Taking this
sample as the starting point, the so called doorFinder was developed in the module called
with the same name, as an application composed of several functions.

findDoor – Whenever the doorFinder is called by the system, the function findDoor
manages the image incoming from the corresponding camera, obtains each isolated frame for
each camera capture and creates the corresponding frame copy for the subsequently image
processing carried out by the functions explained next.

findSquares – This function returns a sequence of the squares detected on the image. To
achieve this task the function creates an empty sequence that will contain points, 4 points per
square (the squares vertices).

Figure 45: Door identified with the doorFinder

For the process explained next it is necessary to filter out the noise, which is made by means
of a down-scale and a subsequently up-scale from the image. To optimize the search for the
door, the COI (Channel of Interest) set for the image treated, which is an RGB one, is the
third channel and corresponds to the colour blue. After that operation the system tries several
threshold levels in which the contours are searched (it was already explained in section 3.3.6
the aim of the thresholding procedure which belongs to the techniques of segmentation). Any
time the program finds a contour, it is checked to prove if all its angles are of approximately

1 In this work, in matter of detection, squares and rectangles are mentioned without distinction.

54

Chapter 4 System Integration

90 grades. This is the only condition a contour in this case must fulfil, to be stored in the
sequence of squares, actually with that condition squares as well as rectangles1 are detected.

drawSquares – Since the previous function finds all the possible rectangles in the image, the
function drawSquares discriminate among all the contours stored in the sequence made
by the function findSquares to find the one which corresponds to the door and draw the
respective rectangle that defines it.

The procedure followed by the routine to recognize the door is carried out by means of its
proportions. Since the door in the SmaKi has known proportions, the system will choose the
rectangle in the sequence which proportions approach most to the door measures. As
explained with the previous function, the squares are stored as 4-points sequences. With this
information it is possible to determine the height and the width for each square, and hence its
proportion (defined as height/width). When the square with the proper proportions is found,
the respective square is subsequently drawn on the image were the whole process was carried
out (see Figure 45).

4.2.2 Face Detect

In section 3.3.1 were mentioned different procedures to carry out the person detection by
means of image analyzing. Due to the requirements of the system explained next, the one
chosen for the development of this task is face detection. The profits of placing CAM1
(camera for which this application is assigned) focusing on the door are a larger vision field
and greater control of the regions of interest, like proximities to the stove, coffee machine and
even the door. However the way this camera is focused, leave regions in the room where the
entire shape of a person would not fit in the camera view. That is the reason why the “face
detect” was chosen instead of “body detection”. Furthermore the results from the face
detection are optimum for the module sizeEst explained in section 4.2.3, which is used to
estimate the height of a detected person. The module in which this task is developed is called
faceDet and is composed of the functions described next:

faceDet – This function is the one called to execute this module. faceDet makes the
corresponding image capture from the camera CAM1 and prepares the frame for the
subsequent call of the function which makes the face detection, function detectAndDraw.

center_axes – This function draws the axes in the desired image centred in the middle point
of the image (depicted in blue in Figure 46). Moreover return the coordinates of this point in
the image. Although the simplicity of this function it is essential for calculations in this and
other functions like the size estimation described in the next section, even fundamental in the
camera calibration (section 4.2.4).

55

Chapter 4 System Integration

Figure 46: Detected face in CAM1 view field by means of faceDet module

detectAndDraw – The detectAnddraw function tries to find in the frame provided by the
function faceDet all the possible faces and subsequently draw a circle around each face
detected. The method used by the facedetect sample from the OpenCv package to detect faces
was described in 3.3.1, some patterns are searched in the image that are considered by the
classifier as part of a face. This is how the program detects the faces in the image.

Those patterns are sometimes fulfilled by other unwanted objects which can be considered as
the designated fake faces. Figure 47 a) shows one test of the face detection in which three of
the mentioned fake faces appear. To try to control the appearance of fake faces the following
consideration has been taken: Since the camera used for this application is placed fixed to the
ceiling, the detected faces, or in other words, the circles which correspond to those faces
cannot be bigger than a determined radius. A detected face whose circle has a radius bigger
than 35 pixels will be considered as a fake and will be ignored. Furthermore considering the
placement of the camera CAM1 and the layout of the SmaKi, are deduced some regions in
the room where the appearance of faces should not take place. These regions are estimated
experimentally as it is showed in Figure 47 b). In this figure are represented two regions,
region A and B; region A is the one calculated for one 171cm person. Region B is the
extension of region A, estimated for one 200cm person. Thereby all faces detected out of the
adding of these two regions will be considered as fake faces and consequently ignored by the
system. With this method, the circle most on the right depicted in Figure 47 a) would be
directly ignored.

56

Chapter 4 System Integration

Figure 47: CAM1 view a) Fake faces in face detection test. b) Estimated regions to control the
appearance of fake faces.

 If the program detects a “true” face, detectAndDraw executes the function
center_axes to get the centre point of the image (necessary for further calculations, like
in module sizeEst, described in the next section) and returns the designated top face point
(depicted in green in Figure 46), which corresponds to the highest point on the top of each
circle drawn.

4.2.3 Size Estimator

It was discussed in section 3.1.3 the focusing of the system at hand on the “Child safety”
application. The way this system faces this question is by means of this package which
achieves the distinction adult/children, indispensable condition to continue doing any other
consideration in this matter. The module sizeEst is the one entrusted to estimate the height
of a detected person in the SmaKi. This module requires a great synchronization among
several modules as well as good calibration of the camera for which this module is
designated, CAM1. First of all when the system is started, the calibration for the CAM1 must
be properly done by means of the procedure explained later in section 4.2.4. Furthermore it
needs the top face point from the faceDet module (explained in the previous section) as
well as the coordinates belonging to the centre of the image where the face was detected. The
procedure to calculate the height of a desired person is described next.

With the same idea used for the camera calibration, it is possible to determine the size of any
dynamic object in the room if we know the other two variables of the SPD formula (see
section 3.3.4), the pixels it fills in the image and the distance between the camera and the
object in matter. To determine the number of pixels corresponding to the size of an object, are
necessary two points that delimit the object in height (one in the top, the other at the bottom

57

Chapter 4 System Integration

of the object), hence the number of pixels that comprise the object is clearly defined. But in
this case the “size estimator” has only one, the one corresponding to the top of the circle of
the detected face, the top-face point. Another problem when using this procedure, but at the
same time the reason for having chosen face detection instead of body detection, is that there
are some regions in the room where the whole shape from the person does not fit in the
camera vision field. Due to the placement and focusing of the CAM1 these regions are those
close to the camera (blue shading in Figure 49. CAM1 is placed in position A).

The solution to these two problems is directly given with the information provided by the
floor sensors and the implementation of some geometric functions. Thanks to the floor
sensors and the values resulting from the camera calibration, it is possible to know the exact
position of the person and the distance dividing person and camera. Figure 48 (as well as
Figure 49) is part of the calibration helper explained in section 4.2.4. In this figure, as a 3D
view sketch of the SmaKi, the points of interest for the person height estimation are shown
(the way this points are situated in the graph, considers the most general layout of the
different factors involved in the size estimation).

Figure 48: SmaKi sketch in 3D view with points of interest for the height estimation.

Following Figure 48, the camera is placed in A at an AF height of the floor, and focusing on
point C. The position provided by the floor sensors when a person was detected corresponds
to point E (given in to coordinates Ex and Ey), hence this is the only dynamic point to take
into account. Some of the points (or distances) represented in the graph are outstanding for
the camera calibration, these are described in detail in section 4.2.4.

Hence, with all the information described above, the calculation of the size of the person is
possible, since the total height of the person is divided in to two sub-heights: Hp (Primary
Height) and Hs (Secondary Height). Using different procedures Hp and Hs are calculated and
with the addition of these two heights the real height of the person results, designated as H.

58

Chapter 4 System Integration

The primary height is the one comprised between the floor and the axis projection plane at
middle image (depicted in Figure 49 as the straight line resulting of the union AC). The
secondary height is the distance comprised between the middle image horizontal axis and the
upper part of the head of the detected person. The way to calculate these two heights follows
different procedures. Hp is the result of a simply geometric estimation by means of the
known distances:

() ()
)tan(

22

α
OExYFOEyOY

AFHp
−+−

−=

 Hs is calculated by means of the SPD formula. In the case in matter the searched value is the
height, in other words, the unknown size (S) in the SPD formula. Remaining are, the number
of pixels (P) and the distance (D) between camera and object (a person in this case). The
number of pixels is the addition of the pixels existing between the axis projection plane at
middle image and the upper part of the person’s head, which is defined by means of the top-
face point (provided by the detectAnddraw function). The distance between the camera
and the person is designated as Ae (Figure 48) belongs to the first term in the equation. The
resulting equation is the following:

() ()
SPDcntS

OExYFOEyOY
Hs ⋅⋅

⋅
−+−

=
)sin()tan(

22

αα

Once these two heights are calculated, the total height (H) of the person is the result of the
direct addition of these two variables. With the procedure followed to estimate the total
height, three different cases can occur during the height estimation (with respective graphical
representation in Figure 49):

− case 1: The entire shape from the person in matter fits inside the camera field view,
consequently it is very probable that the axis projection plane at middle image
(represented with the AC straight line) is placed under the top-face point where this plane
cuts the detected person. In this circumstance H is the addition of the absolute values of
the two sub-heights Hp and Hs.

− case 2: This case occurs when the axis projection plane at middle image cuts with the
face-top point, or the upper part of the head. In this case Hs is cancelled and the resulting
H has the same value as Hp. This second case normally occurs in proximities to the
camera.

− case 3: In this case the entire shape from the person never fits inside the camera field.
The top-face point is in this case under the axis projection plane at middle image. In this
case Hp is greater than the real height, and Hs results a negative value. The addition of
these two variables gives the right result H.

59

Chapter 4 System Integration

The formulas given for Hp and Hs consider the possibility of these three cases. Actually the
resulting formula does not care the case in which the height is estimated, since they are not
more than particular cases for the same formula.

Figure 49: CAM1 field view and heights relation in SmaKi side view.

In addition, for the end-calculation of the height is important to consider the camera radial
distortion described in section 3.3.5 – the size of the object in the image varies with a lineal
proportion to the variation of the distance camera-object. In principle this aberration affects to
both directions of the camera geometry, vertical and horizontal axis. Taking into account the
layout of the SmaKi (Figure 22) provided in section 2.2.1, it is possible to optimize the radial
distortion for the horizontal axis if the camera is centred in the room, since the maximal
horizontal view range for this axis is considerably reduced. Consequently the error resulting
of this adverse effect is reduced too. Comparatively the radial distortion in the current
configuration is essentially greater for the vertical axis, with a three to eight relation, which
represent the width and the depth of the room respectively. For this case, it is very difficult or
even impossible, to estimate some metrics without considering this aberration. Thereby, the
resulting height described previously is finally calculated with the formula showed next,
which was experimentally calculated:

)1804228,0(+⋅−+= RHrdH

Hrd is the height containing the radial distortion error; R is the distance camera-person and H
the resulting height of the entire height estimation procedure. The graph depicted next Figure
50 represents a collection of samples obtained using the “size estimation” application with a
171cm person as target. In the first graph (Figure 50 top) are considered for each sample Hs,
Hp and the adding of these two variables; represented all them according to the distance
between the camera and the person. The resulting height depicted in this graph is the one
which is affected by the radial distortion (Hrd). It is possible to observe that the resulting
height composes an ascendant trendline with the increasing distance, although the real size of
the person is obviously a constant. The graph depicted on the bottom represents the same set

60

Chapter 4 System Integration

of samples obtained for Hrd, nevertheless in this case the formula to correct the camera
imperfection is applied, having as result the expected constant trendline around the 171cm.

Figure 50: Graphics resulting of the height estimation test. (Top) Resulting height with radial
distortion and composing sub-heights. (Bottom) Resulting height without radial distortion.

Furthermore it is possible to observe in the first graph the difference existing among the
samples obtained of the Hs sub-height and the Hp one. The Hp samples keep a complete
lineal series – the points that represent each sample fit absolutely to the trendline – and those
from resulting from the Hs represent certain grade of dispersion (regarding to the trendline).
The reason of this difference resides in the geometrical variation resulting from the face
detect (remember the Hs is calculated with the top-face point). On the other hand, the Hp is
calculated directly through some geometric estimations and the coordinates provided by the
floor tactile sensors; the linearity is an intrinsic property of the equation that generates the
sub-height Hp.

61

Chapter 4 System Integration

From all this procedure the importance of the correct detection of the faces is clearly
deduced. Since this module uses information from the faceDet module it is possible to
have dragged an error coming from a non controlled fake face (explained in section 4.2.2),
which can turn into fake heights, heights that are impossible to correspond to any person in
the room. It is possible to control the fake heights when they result impossible heights (for
example 2,5 metres or 50cm are not very probable as person heights).

4.2.4 Camera Calibration

It was already mentioned in section 3.3.4 that the camera calibration in this work is not
understood in the sense of creating a 3D vision, but in the sense of a procedure that facilitates
the coordinates of the camera in the room, as well as a mechanism that achieves the
estimation of metrics. In this section two possible ways that were developed to carry out this
task are described, one the called dynamic calibration and the other manual calibration, both
designated for CAM1 which has the main view in the SmaKi. Furthermore for the camera
CAM2 another application, also defined as calibration, was developed, although no distances
or sizes calculated are wanted to be calculated in this case. That calibration, as explained
later, is a manual calibration too, which requires in this case the proper focusing of CAM2 in
the bookshelf for the right operation of the functions this camera carries out.

CAM1 dynamic calibration – There is a function in this module which is entrusted to do the
dynamic calibration of the camera CAM1, the function called camCal. The aim of this
function is to calculate the current coordinates of the camera in the SmaKi. The procedure is
based on the SPD formula principle (see section 3.3.4). When the camCal is executed the
system calls the function findDoor, to have a known size element in the SmaKi as
reference. After finding the shape of the door the application uses a modified Lucas-Kanade
optical flow algorithm, as the one from the lkdemo sample explained in section 3.3.3, to track
the door. To achieve this tracking the system sets two LK-points on the centred in the borders
from the door shape, one at the top, the other at the bottom (green points in Figure 51).

62

Chapter 4 System Integration

Figure 51: Door tracking in dynamic calibration

With this procedure, not only is the door tracked in all times, but also the pixels comprised
between these two LK-points are easily calculated. Since the number of pixels from the door
height in the image is a known value the SPD formula can be used to estimate the relative
position of the camera in the room (remember that the real size of the door is a known value,
an important fact to carry out the identification of the door by means of the doorFinder).
Since the position from the door in the room is a known value too, the current position from
the camera in the room is deduced with a simply coordinates change. This is called a
dynamic calibration, since as explained above and depicted in Figure 51 (four different
screenshots in the same test, where the camera has been moved in different directions an
distances), the LK-points follow the door borders during the running of the application and
this way, although the camera is displaced from its initial position, its location in the room is
always a known value. Of course this application only works if the whole shape from the
door is drawn in the image, otherwise any of the two points in play can disappear and with it
the control of the door.

CAM1 manual calibration – Another module was developed to provide the possibility of a
manual calibration of CAM1. This module includes a help program that can be launched at
the beginning of the application. This program indicates the steps to follow in order to carry

63

Chapter 4 System Integration

out the proper calibration of the camera; where the measures must be done and how to
configure the program. This module consists mainly of three components. The first one is the
so called calibration helper which is an image stored in the program, the one depicted in
Figure 52 and that shows the important points to consider in the camera calibration. The
second main component of this module is a common text file where the different steps to
follow in the calibration are described; by means of this indications the different measures in
the room should be done, taking as reference the calibration helper.

Figure 52: CAM1 manual calibration helper

After the measures are done, the resulting values must be stored in the same text file, since
these are the values that the system needs to accomplish the calibration. This two
components, picture and text file, are launched simultaneously when the manual calibration
function is executed. The third component of the module is a function called manCamCal
that reads the measure values previously stored in file and integrates them in the system for
further use in other applications. If the system is started and no manual calibration is
executed, the system loads the last values stored in the text file and use them for the camera
calibration.

CAM2 calibration – In the same module camCal there is another function to calibrate
CAM2 when the system starts, the function called cam2CalLoop. When this function is
executed a template is shown (blue squares in Figure 53) within the camera view. To
calibrate properly CAM2, the camera must be (manually) moved until magazines (actually
their centres) and template fit in. This template is made by mean of function mInArray
(explained in section 4.2.5) which contains in memory 11 coordinates experimentally
calculated, one for each magazine centre.

64

Chapter 4 System Integration

Figure 53: Bookshelf view in CAM2 manual calibration

4.2.5 Magazine Controller

In order to achieve the recognition of the scenario “Person takes magazine” (described in
section 2.1.4) were developed some image processing functions that involve procedures like
background subtraction and shape recognition (introduced in section 3.3). The control of the
magazines at the bookshelf is carried out by the module magaz. This module is divided in
four functions which are mInArray, takePic, magaz and findMagaz and are
described as next:

mInArray – Since the camera in matter is fixed focusing to the bookshelf, the place that
belongs to each magazine in the camera image is a known value. This function is the one
which gives the position corresponding to each magazine in the image, since those positions
were previously experimentally measured. These positions are each given as a point in two
coordinates, which belongs to the centre of each magazine. From the 11 magazines this
position is stored in an array for subsequent use from other functions.

takePic – This is the function used in this module to capture and store the pictures for its
subsequent processing. First of all the routine will check if the image used as background is
already stored, if not, a picture from the bookshelf is taken and stored at the same time. If the
picture corresponding to the background already exists, the function takePic will make
another capture for future analysis.

65

Chapter 4 System Integration

Figure 54: Bookshelf image capture. a) Bookshelf background, b) Bookshelf current state.

magaz – By means of the function magaz, it is possible to know if any magazine was
removed from its original place. When the function is called, the background image from the
bookshelf and the one to compare, both captured by function takePic, are loaded and
subsequently compared. The comparison is made by mean of a subtraction function, if the
resulting image is not an entire black one (which is the case of Figure 55), a magazine will be
considered as taken. This resulting subtraction, gives the magazine in negative colour since
the gap left by the magazine is white.

Figure 55: First subtraction image resulting. Image in negative.

To convert the magazine to its real colour, a new subtraction is done, in this case, between an
entire white image and the one from the previous subtraction. The resulting image is the
magazine missing in true colour, isolated from the rest of the bookshelf. This image is
subsequently stored for analysis carried out by the next function explained, findMagaz.

66

Chapter 4 System Integration

Figure 56: Second subtraction image resulting. Image in true colour

Furthermore, to control what person takes the magazine, the function magaz is connected
with the module proofPerson (see section 4.1.5), a wider description about this relation is
given in section 4.4.3.

findMagaz – This function is essentially a shape detector. The routine findMagaz uses the
image resulting from the magaz function, and tries to find rectangles by means of different
image analysis methods and geometric estimations. This is how the system detects the
missing magazines, moreover with the pattern resulting from the function mInArray, the
function findMagaz recognizes the magazine detected.
The routine developed for detecting a magazine as a square, is very similar to the one used in
section 4.2.1. First of all an empty sequence of squares that will contain points, four points
per square, is created. A filtering of the noise in the image is done with a down-scale and a
subsequently up-scale from the image. But the key for the optimal detection of the squares, in
this case, is the threshold used. Several threshold levels are tried on the image, concrete levels
comprised in a selected margin specially optimized by mean of experimental tests. Since the
contours described by the magazines are not perfectly defined, the routine entrusted to find
the squares, identifies several squares for each magazine. To avoid this result, the program
resorts to an iterative process in which the duplicate squares are ignored. At the end of the
detection, in the sequence of squares only one square per magazine remains. Furthermore,
although it results obvious, it is very important to consider that the magazines in matter are
no intermixed or partially occluded or the mentioned match will no longer be realized
[Sin02]. Therefore the function nearObj explained in section 4.1.5, provides the necessary
tool to avoid this unwanted situation. A greater explanation of the relation between these two
functions is given with the description of the scenario “Person takes magazine”. In section
4.4.3. Figure 57 shows the result of the magazine detection in two different cases in which
the program has drawn green squares where the contours were identified.

67

Chapter 4 System Integration

Figure 57: Magazine detected as square: a) One magazine case. b) Several magazines case.

After the different squares (magazines) in the image are detected, the system compares the
centre of each square found with the positions given by the mInArray. If those centres
match inside a margin of pixels with regard to the reference pattern established by the
function mInArray, the missing magazines will be detected. The results remain stored and
the state of the bookshelf is always controlled, what magazines are missing and which are
not.

Figure 58: Missing magazines recognized. a) Magazine no. 2 recognized.
 b) Magazines no. 7 and no. 11 recognized.

4.2.6 Cup Detection

In order to provide support to the recognition of those scenarios in which the coffee machine
takes part like “Person makes coffee” or “Child makes coffee” is developed a software
module in which the ARS-PC Vision recognizes when a cup appears in the camera view

68

Chapter 4 System Integration

field. The detection of the coffee cup is carried out by the module cupDet which contains de
only routine called cup. This function is basically a shape recognizer, in this case circles. By
means of some processing image functions, the captured image is prepared for an optimal
detection of circles, which is done through the function cvHoughCircles. The functions
used to treat the image are among others, the smoothing and dilation techniques explained in
section 3.3.6. The function cvHoughCircles finds circles in greyscale images using
Hough transform. These functions can be configured to determine some properties from the
circles to be detected, like minimum radius, maximal radius, or the minimum distance among
circles (among its centres).

Sometimes, the program detects the denominated fake cups (unwanted circles) due to changes
of light or simply because of bad detection, among other reasons. With the right configuration
of the function cvHoughCircles the appearance of the fake cups can be reduced. Since
the camera in matter is fixed at any distance of the coffee machine, the resulting radius from
the detected cups must be comprised between two values to consider them real cups. Circles
with a radius smaller than the minimum selected or with radius bigger than the maximal one
are considered as fake cups and consequently ignored.

Figure 59: CAM3 view field . (Left) Current image without image processing,
 (right) image processed and analyzed, cups detected.

With the other parameter mentioned, which is the minimum distance among circles, and
considering the minimum radius mentioned before, two circles will be considered as fake
cups if the distance among them is less than the resulting of the double of this minimum
radius. The third and last method applied to try to control the appearance of fake cups, is to
restrict the number of detected circles in the image at the same time; only to coffees can be
prepared at the same time, which that means two cups.

69

Chapter 4 System Integration

Figure 59 (right) shows the result of the “cup detection” in which two coffee cups were
detected. The image was treated with functions dilate and smooth [ORM01,JH00] and the
founded contours are drawn with red circles by the same function cup.

4.3 Interface

This section as well as the corresponding package with the same name, is designated this way
since it has the same purpose as the strictest meaning of the word in matter. The
Encyclopædia Britannica defines interface as “the place at which independent and often
unrelated systems meet and act on or communicate with each other” [BOE07]. Consequently,
in this section it is described, firstly the way the cameras capture the images and how these
images are subsequently visualized by means of the module cameraLoop (section 4.3.1)
and after that in section 4.3.2, the developed procedure to control the system operation
(programs that will be executed or not), as well as the “running modes” available (sections
4.3.3, 4.3.4 and 4.3.5)

4.3.1 Camera Loop

The cameraLoop module is the one which manages the image capturing and the
consequently video reproducing. This is made by means of two functions mainly, the
cameraLoop (one specific for each camera) and the checkTimeForCam function.

cameraLoop – This function has three different counterparts, one for each camera
considered in this work. The aim of a cameraLoop function is, at first capturing the frame,
check if the camera in matter provides the frame properly and shows the received image in
the corresponding window as a video sequence. There are three different cameraLoop,
hence there are three visualizing windows (“main view”, “bookshelf” and “coffee machine”)
one for each camera. This routine controls the time the program remains looping since this is
an important fact for the right visualizing of the image. Furthermore, if the system runs in the
Recording Mode (explained later in section 4.3.5) the routine writes the captured frame in a
specific video file in order to record the corresponding video sequence.

checkTimeForCam – This function is called only in the Database Mode (running mode
explained in section 4.3.4), this is when the image capturing is carried out by means of a
previously stored video file. The checkTimeForCam function, is in this case the one which
controls the three cameraLoop functions by executing them in a sequential way so that
each video is reproduced with the proper frame rate.

70

Chapter 4 System Integration

4.3.2 Function Management

The function management, in other words, the way the system controls what functions or
configurations – like the operation modes described later in the next section – must be taken
into account, is carried out by means of two modules, the keysControl and the
checkAndRun.

keysControl – This module contains several functions that are entrusted to display at all time
the possible configurations the system admits and the corresponding keys that activate (or
deactivate) the respective functions. In Figure 60 (top) is shown the display in the command
window of some configuration values, like the cameras that are currently activated as well as
the values resulting from the camera (manual) calibration. Moreover the “Main Menu” is
shown together with the corresponding keys that activate the possible program options. This
menu will be displayed in a different way depending on what cameras are activated. In case
the camera CAM2 is activated, a new option appears in the menu to facilitate the calibration
of the camera in matter. By choosing one of the options available, a new menu is displayed
Figure 60 (bottom), in this case the one corresponding to the Live Mode menu.

Figure 60: System options management by means of keysControl. (Top) Main menu,
 (bottom) Live Mode menu.

71

Chapter 4 System Integration

checkAndRun – This module is composed of only one function designated with the same
name. This routine is the one entrusted to go through all the different functions belonging to
each camera and execute those which are activated (by means of the keysControl or as
default depending on the running mode). Furthermore the function checkAndRun sets the
proper configuration for each video writer (explained later in section 4.3.5) in case the
operation mode is the one to record scenarios.

4.3.3 Live Mode

The Live Mode is the one developed to work synchronized with the ARS_Live (see section
3.2), that means the system will work processing real-time information. The ARS-PC Vision
receives on the one hand all the symbols incoming from the ARS-PC and on the other hand
the information generated by the cameras.

Figure 61 represents the main loop the system follows in the Live Mode configuration. First
of all as an indispensable condition for the proper system operation the program waits until
the connection with the ARS-PC is established. Once the connection is established the
program remains alternating mainly among three modules, the receiverLoop, the
checkAndRun and the cameraLoop. Only if any “valid” detection is made by any of the
functions called by the module checkAndRun, the corresponding NewSymbol-Message
will be generated and subsequently sent to the ARS-PC Vision by means of function
sendSymbol, for after that continuing alternating among the functions already mentioned.
Due to the procedure used in this implementation is mandatory that none of the mentioned
functions block the course of the system. Therefore functions like the receiverLoop or
the cameraLoop are controlled by time (and other specific conditions that consider special
situations).

72

Chapter 4 System Integration

Figure 61: Main loop comprising the Live Mode

4.3.4 Database Mode

Since all the information which does not belong to the one provided by the cameras, is
received in the ARS-PC Vision through the ARS-PC module, the first one does not
differentiate if the incoming symbols are generated by current sensor values (Live Mode case)
or, as in case of ARS_Database (referenced in section 3.2), from values previously stored in
the Sensor Database. In this sense, this operation mode and the one described in the previous
section, work the same way. The only question that differentiates these two running modes,
the one that really cares in this case, is that the video capturing is made from previously

73

Chapter 4 System Integration

Figure 62: Main loop comprising Database Mode

stored video files and hence the different system functions will be executed over those files.
Due to this fact, ARS-PC and ARS-PC Vision must be well in-time synchronized. That
means that the ARS-PC Vision must start to reproduce the corresponding video files at the
same time the scenario does and remaining synchronized during the reproduction of that
scenario. It would be senseless to analyze a video sequence where a person is close to the
table and the received sensor information belongs to the door contact switch, activated some
seconds later or vice versa. To achieve this synchronization the program loads the
corresponding videos when the microsymbol “Door status” is received, because the main
door in the SmaKi was opened. This is actually the instant in which the recorded scenario
starts.

74

Chapter 4 System Integration

Furthermore, the system must know which video correspond to each scenario. The program
will load the videos corresponding to each cam, when their names (the file name) match with
the timestamp from the received “Door status” symbol (symbol structure explained in section
2.2.4). The videos will be loaded when the first “Door status” symbol is received from the
ARS-PC as they were recorded when the same symbol occurred during the recording of the
scenario in matter (task entrusted to the Recording Mode, explained in the next section). The
reproducing of the three videos and the appropriated time synchronization is controlled with
the function checkTimeForCam (section 4.3.1). In Figure 62 is depicted the procedure
followed through the Database Mode, the necessary steps until the videos are loaded, to
remain after that in the same loop as the Live Mode with the only difference of the video
synchronization.

4.3.5 Recording Mode

In section 3.2 was discussed the necessity of a third operation mode in order to record
scenarios as part of the test purposes concerning the entire ARS-PC system. Through the
recording mode, no analysis of the image is done, only a visualization of the camera capture
and the corresponding video recording is carried out through this procedure. In Figure 63 it is
described, using the different modules composing the system, the run procedure followed in
the recording mode. First of all, the system waits until the connection with the ARS-PC is
established, after that it remains inside the receiverLoop until the right symbol “Door
Status” reaches the ARS-PC Vision to subsequently create the video files with the whole
procedure previously explained. When the video files are created, the system remains
alternating between the cameraLoop (where the video sequences are generated and stored)
and the receiverLoop until the scenario finishes.

For each camera a different video file is created and for each file a video file writer must be
assigned. A video file writer needs to be properly configured for the right recording of the
video. The different information necessary for its configuration is: the name of the file in
which the video will be stored, the frames per second rate (fps), the size of the video frames
and the name of the codec in FourCC (Four Characters Code) [MDN07].

In order to facilitate the further access to the created video files, the name of each video file is
automatically designated with the timestamp of the received microsymbol “Door Status”,
when the system detects that the main door is opened. For each file the name is designated as
follows “<timestamp>_CAM<camera number>.avi”. The timestamp is the one from the
symbol “Door status” and the “camera number” is an integer that refers to the camera which
is assigned to take that video; numbers 1, 2 or 3.

75

Chapter 4 System Integration

Figure 63: Main loop comprising the Recording Mode

Which codecs are supported depends on the back end library. On Windows HighGUI (see
section 2.3.2) uses Video for Windows (VFW), on Linux ffmpeg and on Mac OS X the back
end is QuickTime [OCL07]. Since this work is developed on Windows, the possible video
codecs to choose must be in VFW format. The one used to configure the three video file
writers is MPEG-4, since it is a common codec and its relation compression-quality
acceptable enough (in FourCC MP42 [MDN07]).

The fps selected should be under the maximum fps indicated in the specifications (see section
2.3.3) of each camera. The fps used for each video file writer were chosen considering the
requirements of the applications each video is designated for. For example, the camera
CAM3 is focused to the coffee machine, in this case it is senseless to choose a high fps, since
for the detection of the cup, temporary information is not necessary. The camera CAM1,
which has a bigger line of sight, has to have more frames per second since the applications

76

Chapter 4 System Integration

designated for this camera need to be in time synchronized and the time precision is
necessary. The frame size field in each video file writer is selected for each camera according
to the maximal video resolution each camera can give.

With all these configurations the system is prepared to record the desired scenario when the
“recording mode” is executed. At the end of the sequence, there will be so many videos as
cameras in play (with a maximum of three cameras) with the proper configuration for their
reproducing within the Database Mode.

4.4 Applications

Since the system is designed for the final applications mentioned before (see section 3.1), the
ARS-PC Vision is optimized for applications “Scenario Recognition” and “Child Safety”. In
this section the connections between the different modules previously explained are described
to achieve the mentioned applications.

4.4.1 Adult/Child Distinction

Actually this section does not describe the way followed to recognize a concrete scenario, but
it comprises the base to those scenarios where the “Child safety” represents the final purpose.
The distinction between an adult and a child consists basically in the detection of a person
and its subsequent height estimation.

The procedure followed to achieve the distinction among adults and children involves several
modules or functions, starting with the activation from the tactile floor sensors, going through
the ARS-PC, than through the ARS-PC Vision and finally returning again to the ARS-PC for
the consequent support in the recognition of the scenario. In Figure 64 the different steps and
the necessary modules to accomplish the height detection are enumerated.

For the estimation of the height of one person, the only information the ARS-PC Vision
requires from the ARS-PC (remember that all the information provided by the sensors arrive
at the ARS-PC Vision through the ARS-PC), is the current position of that person in the
SmaKi. As shown in Figure 20 the first symbol generated through the tactile sensors is the
microsymbol Object. Then, only when this symbol is received in the ARS-PC Vision, the
adult-child distinguish mechanism will start. With the activation of a tactile floor sensor
many processes are unleashed until the ARS-PC recognizes that activation as a microsymbol
object and subsequently sent to the ARS-PC Vision via TCP. Since, as explained in section
3.4.1, the ARS-PC sends every symbol generated to the ARS-PC Vision, it is necessary to
check what kind of message has been received, because only one gives the right information
to accomplish the target of the application. Only if the message received is a microsymbol
object with property Position and scheme Rectangle (verification carried out by function

77

Chapter 4 System Integration

proofRectangle) the function getPosObj will try to get the value of the corresponding
property Position within the symbol object.

Figure 64: Unleashed procedure in a successful Adult/Child Distinction.

Once the system has the current position from the object, executes the face detection
(function faceDetect) looking for a possible human face in the image. If the floor sensors
were activated by a person, all the involved processes worked properly, and the
circumstances for the image processing were propitious, the face of that person will be
detected in the image and the next routine from the application will be executed. The next
task in the application is to calculate the height of the person detected, which is made by
mean of function sizeEst. For this calculation this method needs the top-face point given
by the faceDetect function, the position of the person in the SmaKi and some values
resulting from the camera calibration. With all this, several geometric calculations and some
mathematical estimations, the height is deduced. Of course the detection will be only carried
out in the regions where tactile floor sensors are placed and at the same time regions covered
by the CAM1 view field (this region is clearly defined in the layout of the SmaKi given in

78

Chapter 4 System Integration

Figure 22, where the camera view field starts approximately at the point marked with an “x”
and ends in the left extreme of the room).

When the desired value is calculated, it is sent to the function nsmHeight and it is
encapsulated there with the proper symbolic structure that makes it able to return to the ARS-
PC via TCP (by mean of function sendSymbol) to continue the processing by other
modules. Different modules in the ARS-PC use this information provided by the ARS-PC
Vision to generate scenarios where a child is involved, like the “Child makes coffee” scenario
or the “Child near stove” one.

4.4.2 Scenario: Adult/Child makes coffee

It was already mentioned in section 2.1.4 the existence of a scenario-symbol “Person makes
coffee” and another one designed as “Child makes coffee” in order to consider the hazardous
situation, as part of the application “Child safety” (discussed within the system design in
section 3.1), in which a child tries to manipulate the coffee machine. For the generation of
the scenario “Adult makes coffee” or “Child makes coffee” two facts must be considered.
First of all the preparation of the coffee must be recognized and then if the person in matter is
detected as an adult or as a child. The first question is solved with the vibration sensor
installed in the coffee machine (section 2.2.2), and the second one is carried out by means of
the process explained in the previous section, the Adult/Child distinction. In addition, the
ARS-PC Vision gives support to the vibration sensor, since with the succession of the
processes shown in Figure 65 the system informs the ARS-PC when a cup is detected in the
camera view field.

Figure 65: Unleashed procedure in a successful Cup Detection.

The function cup, which is assigned to the camera CAM3, checks if a cup appears in its
vision field by mean of a circles detector. In case the detection is satisfactorily made, a NSM
is created by the nsmCup routine, and sent by means of the function sendSymbol to the

79

Chapter 4 System Integration

ARS-PC. The ARS-PC manages this information contrasting it with the one from the
vibration sensor at the coffee machine on the whole from the application from the previous
section and finally generates the scenario in matter.

4.4.3 Scenario: Person takes magazine

Even though the previous scenario did already exist in the ARS-PC, the ARS-PC Vision
provides a great support in case of sensor break down or simply for a greater contrast in
matter of detection. The scenario “Person takes magazine” described in this section represents
a new scenario for the ARS-PC (already referenced in section 2.1.4). Due to its detection
characteristics and the sensors in the SmaKi previously installed, a scenario with those
characteristics was impossible to be recognized until the assembly of the cameras in there.

Figure 66: Unleashed procedure in a successful detection during the Magazines Control.

80

Chapter 4 System Integration

The generation of the scenario “Person takes magazine” is the consequence of the control
from the magazines on the bookshelf and it is generated when the system detects that a
person takes a magazine from the bookshelf away, as well as updated when the magazine is
set back in the bookshelf. The procedure the system follows to detect this scenario is shown
in Figure 66 and described next:

At the beginning of the program, after the TCP connection between the ARS-PC and the
ARS-PC Vision is made and when the first symbol message arrives at ARS-PC Vision, the
function takePic makes a capture from the current image of the bookshelf. This picture is
stored as bookshelf background for future comparisons. After that, the system remains in the
main loop (represented in Figure 61 for the “live” detection), and does not react until a
symbol Person is received from the ARS-PC. If a symbol Person is received (message
proofed by function proofPerson inside the receiverLoop) it is because a person is
recognized at that moment in the SmaKi. After that, the ARS-PC Vision makes a register of
all persons in the room (with functions proofPerson and others from module list). By
means of function nearObj the system checks for each incoming UPM if any of the
registered persons is near the bookshelf. If this is the case, the system waits until that person
moves away from the bookshelf proximities to make a new capture (function takePic).
This way the system makes sure to take a clean picture of the bookshelf (without occlusions).
After this second capture is done, both captures, the first considered as background and the
last one, are compared in order to check if changes were made in the bookshelf (function
magaz). If this is the case, the system tries to find the missing magazine in the image (with
findMagaz).

With this procedure the system keeps the current status of the bookshelf, what magazines are
missing and which not. When a change in the status of the bookshelf is detected, the
corresponding NSM is generated (in this case with the nsmMagaz function) with the current
status of the bookshelf and sent via TCP back to the ARS-PC (by means of function
sendSymbol). The symbol is sent as a sensor-value symbol. That means that the ARS-PC
must generate, after receiving the message from the ARS-PC vision, the corresponding
symbols for each level until reaching the scenario-level.

In Figure 67 it is shown the graphic visualization of the SmaKi (developed in [Sch07] as part
of a previous thesis), which describes the current state of the SmaKi, firstly the activated
sensors (in this case some floor sensors and one motion detector) which are also easily
identified in the previous Figure 20. In the “Association layer”, the one in the middle, are
depicted the own detected items from the SmaKi (like the coffee machine, the table, the
fridge or the bookshelf). The last part composing this graph is the “Representation layer”, in
which, in this case, the “objects” represented in the first part are finally recognized as
persons. Furthermore the recognized scenarios occurring at that are depicted to; in the current
picture, the scenario “Meeting” and the scenario “Person takes Magazine”.

81

Chapter 4 System Integration

Figure 67: SmaKi Visualizer. Scenarios Meeting and “Person takes magazine” detected.

4.4.4 Scenario: Child near hot stove

The recognition of the scenario “Child near hot stove” was already considered in the ARS-
PC, as well as the previous explained scenario “Child makes coffee”, this scenario is
considered in the endeavour to avoid dangerous situations in which children are involved.
There were mentioned in section 2.1.4 the requirements for the generation of this scenario:
With the addition of the ARS-PC Vision to the whole system, the ARS-PC gets greater
support in the detection of this scenario. The way ARS-PC Vision gives this support is by
means of the adult-child distinguish application explained in section 4.4.1, which combined
with the generation of the symbol “Hot stove” gives the basis for the scenario in matter. If a
person in the SmaKi recognized as child is near the stove detected as hot, the scenario “Child
near hot stove” is consequently generated.

4.5 Integration in ARS-PC system

Until now it has been always talked about the ARS-PC Vision as a system which, by means
of the information obtained by the ARS-PC and the complementary information provided by
the computer-vision layer, is able to recognize different situations and scenarios, generate the

82

Chapter 4 System Integration

corresponding symbols and send them back to the ARS-PC system; all this without
considering the different mechanisms that involve the ARS-PC system to achieve the end
applications. Actually the intention of this thesis is to build an entire unique system,
nevertheless with the whole system explained throughout this work the remaining part
concerning to the ARS-PC system procedure needs some upgrades for the complete
integration of both systems.

It was already discussed in section 3.4 as part of the system design, the necessity of a whole
set of new functions to communicate the system developed in this thesis with the previous
one installed at the SmaKi. Furthermore it was also necessary additional modules to treat and
manage the symbolic information. The reason of this fact derived of the disparity of the code
languages between the previously implemented ARS-PC and the software-package chosen
for the development of the computer-vision layer composing the ARS-PC Vision, the
OpenCV. Hence, the ARS-PC Vision is in essence an external module to the ARS-PC,
interconnected with a net-interface, which procedure reaches its limit when the symbol
message is sent in the ARS-PC direction. After that, for the end-integration of both systems,
it is necessary the development of some new methods and functions to face the generation of
the different symbols within the different levels, until completing the generation of the
supposed recognized scenario.

To carry out this task is briefly described in section 4.5.1 the way the ARS-PC is structured, a
break down in which the different modules that compose this system are enumerated. Finally
to end the entire implementation of the system and achieve the end-integration of both
systems, the procedure to follow is explained in section 4.5.2, discussing the different
modules in play.

4.5.1 ARS-PC structure

It was already described in section 2.2.3 the way the ARS-PC system is connected with the
other components composing the whole system, the Octobus, the Sensor Database and the
Symbol Database, as well as the connection related with the ARS-PC Vision. The
applications of that components were discussed, furthermore the possibilities they provide for
the development of the different running modes were explained in section 3.2; the ARS_Live
and the ARS_Database. The first procedure works in real-time, recognizing the situations
occurring constantly in the room; the second one is developed for tests purposes, no presence
in the SmaKi is necessary, the information of the scenarios – in essence the sensor data – are
taken from the Sensor Database. In Figure 68 are represented once again the mentioned
connections, concretely for the ARS_Live configuration (observe that the ARS-PC considers
in this case the use of the Octobus and the Sensor Database at the same time), this time with
all the packages composing the ARS-PC system. Following the specifications given in
[Ric07] are described next the implemented software components that compose the ARS-PC
system:

83

Chapter 4 System Integration

msf_live – This package generates microsymbols from the incoming messages, received from
the Octobus and also from ARS-PC Vision. The prefix “msf” derives from “Microsymbol
factory” and is used in the real-time configuration, to convert sensor data y microsymbols.

symbols – The software-package symbols is entrusted to manage the different
microsymbols in order to create new snapshot-symbols, representation-symbols and scenario-
symbols.

fis – This package contains all functions that deal with the decision making methods. This
package is called “fis” as reference to the Fuzzy-Interference-System.

ars_graph – The generation of the connections among the different symbol levels in the
graphical representation of the ARS-PC is carried out by a set of functions that compose this
module (see Figure 20).

smaki_vision – This package shows the recognized symbols in a simple graphic layer as
representation of the SmaKi.

applications – This package contains applications which were defined for the ARS-PC
system and provides a graphic representation for all them.

Figure 68: ARS-PC system break down with interconnections in ARS_Live configuration [Ric07]

The ARS_Database configuration uses all the packages mentioned above as exception for the
msf_live, but instead, there is another module called msf_database, which extracts the sensor
data from the Sensor Database and generates the corresponding microsymbols; of course the
Octobus does not take part in this configuration.

84

Chapter 4 System Integration

4.5.2 Integration procedure

Section 4.5 was introduced referring to the limit where the ARS-PC Vision end its procedure
in the whole process of the scenario recognition, as it makes the corresponding detections
and sends the NSM to the ARS-PC (similar processes were explained in sections 4.4.1, 4.4.2,
4.4.3 and 4.4.4). Taking the previous section into account, is deduced that the module that
will treat the messages sent by the ARS-PC Vision is the msf_live – in the case of the
ARS_Live configuration. That means that, for the end integration of both systems, the first
module that must be upgraded in the ARS-PC is the msf_live package, in which new
functions to process the incoming NSM from the ARS-PC Vision must be considered.

After that, once the new functions are integrated in the msf_live package, it is necessary to
reconsider the next step following the ARS-PC structure, the conversion of one or more
microsymbols in snapshot-symbols; these symbols in turn must establish new connections to
the representation layer and finally these symbols have to make the corresponding
contribution to the generation of the scenario-symbols in the upper level. As part of this
procedure, are two facts which are important to remark. On the one hand the integration of
the ARS-PC Vision – as well as any another new source of information – to the ARS-PC,
may involve the recognition of new features of the environment, what implicates the
consideration of new symbols in the ARS symbol alphabet (see section 2.1.3) or even the
adding of new properties to the already considered symbols. On the other hand, with the
possible new redundant information, would be suitable to reconsider the implemented
decision making methods contained in the fis package; this would achieve the optimal
generation of the symbols among the different levels. Finally, the graphical layer, composed
by the packages applications, ars_graph and smaki_vision, must be
complemented with the new functions and the new added symbols (as it is depicted in Figure
67 where the generation of the scenario “Person takes magazine” is represented with a
“crossed magazine” in the Representation layer).

85

Chapter 5 Results and Further Work

The aim of this work was the design and implementation of a computer vision system, based
on the ARS model, as well as the proper integration of this system in the previous existing
ARS-PC system. The designed system enjoys a full two-way communication with the ARS-
PC, as if they where the same module and by means of different computer-vision
applications, properly integrated with the rest of the sensors, it is able to provide support and
enhancement in the task of scenario recognition.

The system was successfully implemented with two different operation modes. One of them
works in a parallel way to the ARS_Database, which recognizes situations and scenarios that
are the result of the reproduction of previously stored sensor-data. The other application
receives information in real-time from all the sensors, even so from the cameras and thus the
system at hand carries out the situation and scenario in real-time recognition, providing a
constant control of the situation happening in the SmaKi.

In section 5.1 are evaluated the results obtained of the end release of the system, by means of
the analyze of the weak points and its strengths for each of the application developed in this
work. The following section, the one which encloses this thesis, composes a description about
the guidelines suggested to follow in further works, lacks as well as upgrades that should be
considered in order to achieve consistency in the following projects.

5.1 Results

There are two important facts to consider in order to evaluate objectively the obtained results
of the system implementation. The first question is actually consequence of the main target
for which this system was developed, the integration of the system with the ARS-PC. The
system integration was brought up to demonstrate the profits of developing applications using
all the available sensors, floor sensors, motion detectors, cameras, etc., thus some of the
applications developed in the ARS-PC Vision start with results obtained by the ARS-PC.
Therefore the different miss-detections produced in this ARS-PC system are dragged into the
system developed in this work and of course returned back to the first system, which is the
one entrusted to carry out the generation of the recognized scenarios. The second question to

86

Chapter 5 Results and Further Work

take into account is that the knowledge of computer vision applied in this work was enough
to prove the advantages of providing the whole system with a computer-vision system, but on
the other hand they resulted sometimes insufficient as the results given by the ARS-PC
Vision are not always optimal. Hence, taking these two considerations into account, the main
functions and applications are valued next.

Function: Camera calibration – The camera calibration explained in the context of this
work, is understood as a set of cameras configurations, different depending on the application
in matter, which facilitate the proper operation of the applications, in sense of providing some
coordinates or references to fulfil the requirements of the corresponding functions. There are
three different kinds of camera calibrations developed in this work, a dynamic and a manual
calibration specific for CAM1, and another one for CAM2.

The dynamic calibration represents a suitable tool for the camera configuration since the
system calculates by itself the actual position of the device. However in the moment that the
reference used for the self calibration – which in this case is the door of the SmaKi – is not
well recognized, the calibration is not successful anymore. Because of the great dependency
of other functions on the proper calibration of the camera, the use of the dynamic calibration
in the system was discarded. Therefore the system was provided with the manual camera
calibration function, which only depends on how accurately the measures are taken. This way
once the camera is well calibrated, there is no reason to find an error produced by this
function. The calibration implemented for CAM2, as well as the manual calibration for
CAM1, works without problems, it only needs the proper focusing of the camera the first
time it is installed and thus the control of the bookshelf is ensured to be successful.

Application: Adult/Child distinction – The aim of this application is to distinguish adults
from children in order to avoid potential situations of danger where children are involved.
The way this application is carried out is by means of the estimation of the corresponding
height of the detected persons in the SmaKi. This application, the way it was implemented,
does not only involve the right operation of several functions within the ARS-PC Vision, but
also the proper working of the ARS-PC system and an accurate in-time synchronization
between both systems. To analyze the weak points of this application it is important to break
it down into the different tasks it is involved in. The first fact to consider is the proper
calibration of the camera – the type of calibration selected for this application in order to drag
the fewer possible errors was the manual calibration. Once the system is running the trigger
of this application is the activation of the floor sensors. The ARS-PC must process the
information and send the results to the ARS-PC Vision – taking into account that the Octobus
facilitates the sensor values each 70ms. For the right calculation of the height of the detected
person, the ARS-PC Vision needs to carry out the rest of the operations right in the same
moment and place where the floor sensors were activated, otherwise the rest of the operations
will be made of incoherent information. After the sensors are activated, the face detection is
executed what normally takes around 50ms until the system detects a face, of course when
the person is facing the camera and the conditions of illumination are favourable, otherwise

87

Chapter 5 Results and Further Work

no faces will be detected and the whole process would stop at this point without giving any
result. Furthermore, the entire floor in the SmaKi is not covered with floor sensors, and
neither does the camera field cover the whole room. In regions where one of these two
conditions is fulfilled the height estimation will not be satisfactory. Considering that all the
steps previously mentioned are accomplished successfully the system will carry out the
height calculation by means of some geometric estimations.

The different tests carried out for this application were manifold, however unfortunately no
test was made with a child – what in height matter could be a person under 1,50 metres –
used as target for the height estimation. Figure 69 is the result of a 114 samples test, made for
a 171cm person moving all around the room – values are only obtained there where floor
sensors are available, they are also limited to the region which fits into the camera field. A
meaningful value that is deduced of this test is the resulting mean, which differs less than
1cm of the real size of the target. Taking this fact into account are suggested some possible
developments or upgrades for this application as part of the further work related with
computer vision in section 5.2.

Height Estimation test for a 171 cm person

70

90

110

130

150

170

190

210

230

300 320 340 360 380 400 420 440 460 480 500

Distance camera-person (cm)

He
ig

ht
 (c

m
)

samples Lineal (samples)

Figure 69: Dispersion graphic resulting from the height estimation test.

In Table 1 are resumed the different error percentages obtained as result of the mentioned
test. In this table is shown the error magnitude as a difference to the real height of the target.
It is divided in different intervals and the corresponding frequency is calculated in relation to
the 114 samples generated. The table shows that the ~52% of the samples taken involve an
error less than 10 cm and the ~88% an error less than 20cm.

88

Chapter 5 Results and Further Work

Table 1: Error percentages relation obtained from the height estimation test.

ERROR
MAGNITUDE; |e|

SAMPLE
PERCENTAGE

|e| < 5 cm 28,08%
5 cm ≤ |e| < 10 cm 23,68%
10 cm ≤ |e| < 15 cm 23,68%
15 cm ≤ |e| < 20 cm 12,28%
20 cm ≤ |e| 12,28%

Scenario recognition: Person takes magazine – The scenario “Person takes magazine”
represents the situation in which a detected person takes a magazine from the bookshelf. The
scenario in matter represents a new situation for the ARS model, since it was not able to be
recognized by the ARS-PC only with the previous sensors available. Therefore this scenario
involves the consideration and consequent definition of new symbols in the ARS model.

This task, the way it is implemented, should be successfully achieved by the system without
any problem in the most of the cases. Only two things were concluded to be the reason for
miss-detection. The trigger in the generation of this scenario is the right detection of the
person and its relative position to the bookshelf in which the camera is focused. If the ARS-
PC system does not provide the proper detection of these two facts, it could result in a wrong
generation of this scenario, or even result in a situation completely ignored by the ARS-PC
Vision. On the other hand some difficulties related to the image processing can appear. If any
of the magazines in the bookshelf has a similar colour as the bookshelf, it is very probable
that the system would not detect the change when they were taken from its original place,
since the difference between the two situations – the before and the after taking the magazine
– could result negligible for the system. This situation is easily susceptible to be aggravated
in situations with lack of light or strong variations of illumination. As exception of these
possible adversities, this application is achieved with a great grade of success, tested in
several scenarios combining all the variables in play.

Application: Child safety – For this application there were two scenarios taken into account,
“Child makes coffee” and “Child near hot stove”. For the generation of any scenario were a
child is involved the application “Adult/Child distinction” results indispensable. Hence, due
to the way the system is implemented, if there are errors in the height detection, it is possible
to detect a child instead of an adult or vice versa, what would result in a wrong generation the
possible scenarios related. Nevertheless, if the person is a child and it is well recognized, the
system should generate both scenarios without any problem. Moreover, although the SmaKi
already equips a vibration at the coffee machine, the ARS-PC Vision provides support to the
recognition of the “Child makes coffee” scenario, since it recognizes – when the illumination
conditions are favourable – if a cup is set in the coffee machine.

89

Chapter 5 Results and Further Work

In order to prove the scope of this application different test were made. Six different cups,
with different colour and brilliance properties were used to prove the reliability of the system.
Depicted in Figure 70 in clockwise, white (matt), white (brilliant), brown, grey, red and blue.

Figure 70: Cups with different colour properties used in the cup detection test.

The system was applied for each cup in different conditions of light, taking into account that
the surface belonging to the coffee maker, where the cups are placed to prepare the coffee is a
metal surface – and not the one of Figure 70 – which makes dizzy reflections in the image.
The results obtained according to the different methods implemented are shown in Table 2.

Table 2: Relation of detectable cups depending on the light conditions

 LIGHT CONDITIONS
CUP COLOUR ARTIFICIAL LIGHT NATURAL LIGHT

A white (matt) NOT detectable detectable
B white (brilliant) detectable NOT detectable
C brown NOT detectable detectable
D grey detectable detectable
E red detectable detectable
F blue NOT detectable NOT detectable

Several tests were carried out, with different cups – different colour properties – and different
illumination conditions; these are resumed in the twelve combinations shown. Table 2 shows
the complexity this application involves; some cups – depending on its colour – are detected
only with natural light and others with artificial light. There are also colours, like the blue one
tested, that are not detectable under any circumstances. The results obtained by the
implemented system, were not optimal for all the cases, nevertheless this system represents
support to the vibration sensor at the coffee machine in case of failure.

Furthermore, apart from the two main facts mentioned to consider at the beginning of the
section, another barrier was found through the development of this work. The libraries used
for the development of the computer vision applications were the OpenCV; they were chosen
since they are open source code and moreover they are probably the current computer-vision
libraries with the wider range of functions. They are even a suitable tool for the first steps in

90

Chapter 5 Results and Further Work

computer vision due to the great variety of samples and the clearly definition of the functions
composing these libraries. Nevertheless, it was mentioned when these libraries were
introduced (see section 2.3.2), that the OpenCV is composed by a specific graphical interface
called HighGUI, which is just an addendum for quick software prototypes and
experimentation setups. This last consideration involved the investment of many hours in
trying to solve some incongruities derived from this graphical interface. There were two
problems concerned to the HighGUI which affected most to the development of the system,
the incapacity of this interface to configure the camera resolution and the deficit to interpret
the (FourCC) codecs available in order to achieve an optimal video recording.

The problem concerning to the video resolution results ill-fated, since the image resolution is
a crucial fact when the application is matter requires of image processing. The HighGUI not
only does not compose any function to change to video resolution, but also sets the video
resolution in an arbitrary way. These conclusions are the result of having tested these libraries
with several cameras from different brands and different image resolutions. That means that
the video resolution achievable with the cameras used in the implementation of this work,
was never the highest provided by the different cameras. The other problem in matter results
from the incapacity of the HighGUI to load all the video codecs available in the system. This
question derives in the necessity to stick to the codecs detected by the OpenCV; the chosen
codecs through the implementation were not the optimal – in sense of providing a great
quality-compression relation – available in the system.

5.2 Further Work

Since the application field of this work, the computer vision and ARS in general, is very
extensive, there are various aspects which are worth further considerations. The different
aspects described next are deductions arisen of the implementation of the system, possible
developments or application enhancement.

Computer vision

Computer Vision is a discipline which is in the first phases of its development. Nevertheless
the possibilities this science can provide are already countless. This work has implemented
only some of the basic tools of computer vision, and even so demonstrates the support it
represents to the scenario recognition. Through the design of the system developed in this
work, different tools were mentioned, which could be useful for the applications this thesis is
intended for. Next are described the possible improvement of the implemented functions and
the direct application of the tools previously mentioned.

One of the applications for which this work was intended is the person tracking. The
mechanism used to detect persons was the face detection due to requirements deduced of the
design of the system. However, there are many other procedures to detect a person and

91

Chapter 5 Results and Further Work

actually to improve the task of person tracking, like it could be the detection of the human
body shape or the motion detection by means of background subtraction. The way the ARS-
PC Vision knows the number of persons in the room is by means of the results provided by
the ARS-PC system, and not due to the detected faces in the room. Another proposal in order
to enhance this task would be the assembly of a camera at the ceiling to count the different
“heads” in its view field. Combining shape distinction and background subtraction could be
the solution. A part from that, it is important to remark, that throughout this work it was
always refered to face detection and not to face recognition. The face recognition entails the
face detection but it even involves the development of complex algorithms in order to
recognize the detected face among supposed “stored faces” in a supposed “face-database”.
The development of this tool within the ARS-PC could bring the system a step further; hence
the system could have a control of the persons which frequent the SmaKi. Is in this matter
where the system leads to the critical issues of privacy, therefore this application was not
implemented.

One of the tasks that involved much endeavour through the development of this work, and
nevertheless resulted not as accurately as expected was the person height estimation. This
question would not implicate the dependency of so many variables – what actually represents
its weak point – if the procedure used for this task involved the use of stereocameras, which
provide the system in matter with a 3D vision and thus a perception of the metrics within the
image [DZ00,JH00]. Another possible procedure to improve the results obtained in this
application keeping the current configuration with only one camera is described next. It was
mentioned in the previous section 5.1 the good approximation of the mean resulting in the –
114 sample – adult/child distinction test. Taking advantage of this fact arises the possibility to
develop of a dynamic estimation, if the estimated height is the mean resulting of all the values
obtained during the person tracking. The more values the system consider, the more accurate
the estimation.

Due to the sometimes imprecise detections achieved by some of the applications
implemented, arises the necessity of an improvement of the algorithms developed or even a
greater study of the available possibilities in matter of computer vision, in order to provide
the system with a robust vision system that worth further development in this direction.

Integration

The integration of the computer vision – as well as any new art source of information – in the
ARS-PC system, can facilitate the recognition of new situations and scenarios that are not
considerate in the ARS model, this derivates in the necessity of defining new symbols or
even the adding of some properties to the existing symbols. Examples of this fact are the
necessity of a new property Height to the symbol Person or the definition of the new scenario
Person takes magazine. Considering the further implementation of new applications the ARS
system should develop methods to automatically define and create symbols – real-world
grounded and understandable for humans – by itself.

92

Chapter 5 Results and Further Work

Furthermore with the adding of new data sources and the increase of redundant information,
arises the necessity of an upgrade of the current decision making methods developed in
[Ric07]. An example of this fact results of the “cup detection” application developed through
this work, which provides support to the previously – at the coffee machine – installed
vibration sensor. Both devices, vibration sensor and camera, provide the same information –
i.e. coffee is being done – through different mechanisms. Thereby the concept of redundant
data introduced by the ARS is achieved, nevertheless, since the information is more
sophisticated, more sophisticated decision making procedures should be developed too. The
reliability of all the information at hand must be evaluated, considering not only external – to
the devices – conditions, but also the current intrinsic states of these devices. For example,
the information provided by the cameras loose reliability with the lack of light, in this case
the resulting data generated by the vibration sensor – in the case of the coffee machine –
should gain priority. This consideration should be applied always if redundant information
provided by different devices is available.

The current ARS-PC system is the result of a series of works which started with the proposal
of [Pra06] and ended thus far with the implementation of the ARS-PC Vision. The thesis at
hand is the continuation of the work carried out by [Ric07], who not only did he define most
of the current existing symbols of the ARS model but also enhanced it in a great extent
recognizing scenarios with the integration of a decision making system based in Fuzzy Logic
[Ric07] in the recognition of situations. At the same time this work was the continuation of a
previous thesis carried out in [Goe06] which was the precursor of the design and
implementation of the ARS real prototype at the SmaKi. Goetzinger designed the layout of
the SmaKi – sensor network distribution and sensor hardware interface – and based on the
ARS model described [Pra06] developed the first software composing the ARS-PC system.
The series of this works involve a positive balance, what is reflected in the clearly
improvement of a system which achieves better and better the initial purpose what it was
intended for. However it is necessary to remark that these three systems, those developed in
[Goe06] and [Ric07] and the one developed through this thesis, were carried out in three
different periods of time. This question derived in some incongruities between the two first
systems, what involved sometimes difficulties in their comprehension, as well as a possible
dragging of any of those incongruities into the system at hand. A proposal to upgrade the
ARS-PC system is the fusion of these three systems as part of a new thesis that deletes the
possible deficiencies derived from the “lack of synchronism” among these works and
optimizes the system by taking advantage of the proper combination of them.

93

 Glossary

ARS Artificial Recognition System

2D /3D Two Dimensional /Three Dimensional

ARS-PA ARS-Psychoanalysis

ARS-PC ARS-Perception

CCD Charge Couple Device

CMOS Complementary Metal Oxide Semiconductor

COI Channel of Interest

DER Distinguished Encoding Rules

DSP Digital Signal Processing

EM Expire Message

FourCC Four Characters Code

HBM Heart Beat Message

ICT Institute of Computer Techonolgy

IPL Intel Image Processing Library

NSM New Symbol Message

PIR Passive IfraRed.

RGB Red Green Blue

SmaKi Smart Kitchen

SPD Size Pixel Distance

TCP Transmission Control Protocol

UPM Update Property Message

USB Universal Serial Bus

VGA Video Graphics Array

94

References

[Big06] Bigun J.: Vision with Direction – A systematic Introduction to Image
Processing and Computer Vision. Halmstad, Sweden. Editorial Springer,
2006.

[Bra04] Brainin, E.; Dietrich, D., Palensky, P., Rösener Ch.; – Neuro-bionic
Architecture of Automation Systems - Obstacles and Challenges. In
Proceedings of the 7th IEEE African Conference, Gaborone, Botswana,
2004.

[Cas96] Castleman, K.R.: Digital Image Processing. Prentice-Hall, Englewood
Cliffs, New Jersey, 1996.

[Cro05] Crownley, J.L.: Computer Vision for Interactive and Intelligent
Environment, 2005, pages 97-108.

[CY05] Chen, D.; Yang J.: Online Learning of Region Confidences for Object
Tracking. In proceedings of the 2nd Joint IEEE International Workshop
on VS-PETS, Beijing, China, 2005.

[Die04] Dietrich, D.; Kastner, W.; Maly, Th.; Rösener, Ch.; Russ, G., Schweinzer,
H.: Situation Modeling. In Proceedings of the 5th IEEE International
Workshop on Factory Communication Systems (WFCS 2004), Vienna,
Austria, 2004.

[Dub00] Dubuisson, O.: ASN.1 – Communication between heterogeneous systems.
Morgan Kaufmann Publishers, Sept 2000.

[DZ00] Dijvak, M.; Zazula, D.: Accuracy of 3D motion tracking using a
stereocamera. University of Maribor, Faculty of Electrical Engineering
and Computer Science, Maribor, Slovenia 2000.

[Elm02] Elmenreich, Wilfried: Sensor Fusion in Time-Triggered Systems, Faculty
of Electrical Engineering and Information Technology, Vienna University
of Technology, PhD thesis, 2002

95

[FLP01] Faugeras, O.; Luong, Q.-T.; Papadopoulo, T.: The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications. The MIT Press, Cambridge MA,
London, 2001.

[FP02] Forsyth D.; Ponce J.: Computer Vision – A modern approach. Prentice
Hall, 2002.

[Goe06] Götzinger, Sigfried: Scenario Recognition Based on a Bionic Model for
Multi-Level Symbolization. Faculty of Electrical Engineering and
Information Technology, Vienna University of Technology, diploma
thesis, 2006.

[Hol06] Holleis, Edgar: SymbolNet – ein Application Framework für symbolische
Kommunikation.Vienna, June 2006

[HS92] Haralick, R.M.; Shapiro, L.G.: Computer and robot vision. Addison-
Wesley Publishing Co., New York, 1992.

[JH00] Jähne, B.; Haussbecker H.: Computer Vision and Applications – A Guide
for Students and Practitioners. Editorial Academic Press, 2000.

[Kru06] Kruegle H.: CCTV Surveillance – Analog and Digital Video Practices
and Techonology. Editorial Butterworth-Heinemann, 2nd edition, 2006.

[LK81] Lucas, B.D.; Kanade, T.: An Iterative Image Registration Technique with
an Application to Stereo Vision. From Proceedings of Imaging
Understanding Workshop, pages 121-130. Pittsburgh, 1981.

[MK04] Medioni, G.; Kang S.B. : Emerging Topics in Computer Vision. Editorial
Prentice Hall, 2004.

[ORM01] OpenCv Reference Manual, © Intel Corporation, Order no. 123456-001.
United States of America. 1999-2001.

[Pra06] Pratl, Gerhard: Processing and Symbolization of Ambient Sensor Data.
Faculty of Electrical Engineering and Information Technology, Vienna
University of Technology, PhD thesis, 2006.

[Ric07] Richstfeld, Andreas: Szenarienerkennung durch symbolische
Danteverarbeitung mit Fuzzi-Logic. Institute of Computer Technology,
Vienna University of Technology, diploma thesis, 2007.

[Rös06] Rösener Charlotte: Adaptative Behaviour for Mobile Service Robots in
Building Automation. Faculty of Electrical Engineering and Information
Technology, Vienna University of Technology, PhD thesis, 2006.

[RW96] Ritter, G.; Wilson J.: Handbook of Computer Vision Algorithms in Image
Algebra, CRC Press, 1996.

96

[SCGH06] Sebe, N.; Cohen I.; Garg A.; Huang T.S.: Machine Learning in Computer
Vision, University of Amsterdam, HP Research Labs, Google Inc. and
University of Illinois. Editorial Springer, 2005.

[Sch07] Scheiber, Stefan: Visualisation for the Smart Kitchen. Institute of
Computer Technology, Vienna University of Technology, 2007

[Sin02] Sing-Tze, B.: Pattern Recognition and Image Preprocessing, Northern
Illinois University, De Kalb, Illinois: Editorial Board, 2nd edition, 2002,
pages 298-396.

[SRT01] Soucek, S.; Russ, G.; Tamarit, C: The Smart Kitchen Project – An
Application of Fieldbus Technology to Domotics. Vienna University of
Technology, Vienna, 2001.

[SS02] Shapiro, L.; Stockman, G.: Computer Vision, The University of
Washington, Seattle, Washington and The Department of Computer
Science, Michigan State University, East Lansing, MI, 2002.

[Zan98] Zhang, Z.: A Flexible New Technique for Camera Calibration, Technical
Report MSR-TR-98-71, Microsoft Research, first published 1998, edition
2002.

Internet Links

[ARS07] Project ARS – Institut für Computertechnik, Technische Universität Wien.
http://ars.ict.tuwien.ac.at

[AIP07] The American Institute of Physics – Physics Publications and Resources,
http://www.aip.org © 2007 American Institute of Physics.

[BOE07] Britannica Online Encyclopaedia, http://www.britannica.com, © 2007
Encyclopædia Britannica, Inc.

[CWF07] Creative WebCam Features, http://www.creative.com © 2007 Creative
Technology Ltd.

97

http://ars.ict.tuwien.ac.at/
http://www.aip.org/
http://www.creative.com/legal/legal.asp?fr=
http://www.britannica.com/
http://www.creative.com/
http://www.creative.com/legal/legal.asp?fr=
http://www.creative.com/legal/legal.asp?fr=

[ICT07] Institut für Computertechnik (ICT), Technische Universität Wien:
http://www.ict.tuwien.ac.at

[LWS07] Logitech Webcam Specifications, http://www.logitech.com © 2007
Logitech

[MDN07] MSDN, Microsoft Developer Network , http://msdn2.microsoft.com

[OCL07] OpenCV Library Wiki, http://opencvlibrary.sourceforge.net, started on
14th December 2006, edition 14th September 2007.

[OED01] Online Etymology Dictionary, http://www.etymonline.com © 2001
Douglas Harper.

[VAS06] The VASE Lab, http://vase.essex.ac.uk/, 2006, accessed on October 25th
2007

[LTI05] LTI-lib, http://ltilib.sourceforge.net, 2005, accessed on October 25th 2007

[VIG06] VIGRA, http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/ ©
Ullrich Köthe, 2006, accessed on October 25th 2007.

[JAV07] JAVAVIS, http://javavis.sourceforge.net, Robot Vision Group, Department
of Computer Science and Artificial Intelligence, University of Alicante,
2007, accessed on October 25th 2007 .

98

http://www.ict.tuwien.ac.at/
http://www.logitech.com/
http://msdn2.microsoft.com/
http://opencvlibrary.sourceforge.net/
http://www.etymonline.com/
http://www.creative.com/legal/legal.asp?fr=
http://www.creative.com/legal/legal.asp?fr=
http://vase.essex.ac.uk/
http://ltilib.sourceforge.net/
http://kogs-www.informatik.uni-hamburg.de/%7Ekoethe/vigra/
http://javavis.sourceforge.net/

	Chapter 1 Introduction
	1.1 A new Approach
	1.2 Purpose and Problem Statement

	Chapter 2 Framework
	2.1 Artificial Recognition System
	2.1.1 The ARS Model
	2.1.2 Symbol Understanding
	2.1.3 Symbol Level
	2.1.4 Scenarios
	2.1.5 Representation Symbols
	2.1.6 Snapshot Symbols
	2.1.7 Microsymbols

	2.2 Applications Environment – Smart Kitchen.
	2.2.1 Layout
	2.2.2 Sensory Equipment
	2.2.3 Octobus and database
	2.2.4 SymbolNet

	2.3 Computer Vision
	2.3.1 Definition
	2.3.2 Software
	2.3.3 Hardware

	Chapter 3 System Design
	3.1 Applications
	3.1.1 Person Tracking
	3.1.2 Scenario Recognition
	3.1.3 Child safety

	3.2 Running Modes
	3.3 Image Processing
	3.3.1 Person Detection
	3.3.2 Shape Distinction
	3.3.3 Background Subtraction
	3.3.4 Camera Calibration and SPD formula
	3.3.5 Image Aberrations
	3.3.6 Image Treating

	3.4 Interconnectors
	3.4.1 Two-way connection
	3.4.2 Symbolic Processing

	Chapter 4 System Integration
	4.1 Interconnectors (iCon)
	4.1.1 Sender
	4.1.2 Receiver
	4.1.3 NewSymbolMessage modules
	4.1.4 Module: Proof Symbols
	4.1.5 Module: Proof Person
	4.1.6 Module: List
	4.1.7 Module: Get Values

	4.2 Image Processing (imgPro)
	4.2.1 Door Finder
	4.2.2 Face Detect
	4.2.3 Size Estimator
	4.2.4 Camera Calibration
	4.2.5 Magazine Controller
	4.2.6 Cup Detection

	4.3 Interface
	4.3.1 Camera Loop
	4.3.2 Function Management
	4.3.3 Live Mode
	4.3.4 Database Mode
	4.3.5 Recording Mode

	4.4 Applications
	4.4.1 Adult/Child Distinction
	4.4.2 Scenario: Adult/Child makes coffee
	4.4.3 Scenario: Person takes magazine
	4.4.4 Scenario: Child near hot stove

	4.5 Integration in ARS-PC system
	4.5.1 ARS-PC structure
	4.5.2 Integration procedure

	Chapter 5 Results and Further Work
	5.1 Results
	5.2 Further Work

